922 research outputs found

    Spray congealing: An emerging technology to prepare solid dispersions with enhanced oral bioavailability of poorly water soluble drugs

    Get PDF
    The low and variable oral bioavailability of poorly water soluble drugs remains a major concern for the pharmaceutical industry. Spray congealing is an emerging technology for the production of solid dispersion to enhance the bioavailability of poorly soluble drugs by using low-melting hydrophilic excipients. The main advantages are the absence of solvents and the possibility to obtain spherical free-flowing microparticles (MPs) by a relatively inexpensive, simple, and one-step process. This review aims to fully describe the composition, structure, physico-chemical properties, and characterization techniques of spray congealed-formulations. Moreover, the influence of these properties on the MPs performance in terms of solubility and dissolution enhancement are examined. Following, an overview of the different spray congealed systems developed to increase the oral drug bioavailability is provided, with a focus on the mechanisms underpinning the bioavailability enhancement. Finally, this work gives specific insights on the main factors to be considered for the rational formulation, manufacturing, and characterization of spray congealed solid dispersions

    Tailoring the release of drugs having different water solubility by hybrid polymer-lipid microparticles with a biphasic structure

    Get PDF
    The aim of this study is to investigate the potential of hybrid polymer-lipid microparticles with a biphasic structure (b-MPs) as drug delivery system. Hybrid b-MPs of Compritol & REG;888 ATO as main lipid constituent of the shell and polyethylene glycol 400 as core material were produced by an innovative solvent-free approach based on spray congealing. To assess the suitability of hybrid b-MPs to encapsulate various types of APIs, three model drugs (fluconazole, tolbutamide and nimesulide) with extremely different water solubility were loaded into the polymeric core. The hybrid systems were characterized in terms of particle size, morphology and physical state. Various techniques (e.g. optical, Confocal Raman and Scanning Electron Microscopy) were used to investigate the influence of the drugs on different aspects of the b-MPs, including external and internal morphology, properties at the lipid/polymer interface and drug distribution. Hybrid b-MPs were suitable for the encapsulation of all drugs (encapsulation efficiency > 90 %) regardless the drug hydrophobic/hydrophilic properties. Finally, the drug release behaviors from hybrid b-MPs were studied and compared with traditional solid lipid MPs (consisting of only the lipid carrier). Due to the combination of lipid and polymeric materials, hybrid b-MPs showed a wide array of release profiles that depends on their composition, the type of loaded drug, the drug loading amount and location, providing a versatile platform and allowing the formulators to finely balance the release performance of drugs intended for oral administration. Overall, the study demonstrates that hybrid, solvent-free b-MPs produced by spray congealing are an extremely versatile delivery platform able to efficiently encapsulate and release very different types of drug compounds

    High temperature stable separator for lithium batteries based on SiO² and hydroxypropyl guar gum

    Get PDF
    A novel membrane based on silicon dioxide (SiO2_{2}) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2_{2} and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance

    Glutathione-loaded solid lipid microparticles as innovative delivery system for oral antioxidant therapy

    Get PDF
    The present study aimed to develop a novel formulation containing glutathione (GSH) as an oral antioxidant therapy for the treatment of oxidative stress-related intestinal diseases. To this purpose, solid lipid microparticles (SLMs) with Dynasan 114 and a mixture of Dynasan 114 and Dynasan 118 were produced by spray congealing technology. The obtained SLMs had main particle sizes ranging from 250 to 355 µm, suitable for oral administration. GSH was efficiently loaded into the SLMs at 5% or 20% w/w and the encapsulation process did not modify its chemico-physical properties, as demonstrated by FT-IR, DSC and HSM analysis. Moreover, in vitro release studies using biorelevant media showed that Dynasan 114-based SLMs could efficiently release GSH in various intestinal fluids, while 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay demonstrated the good radical scavenging activity of this formulation. Dynasan 114-based SLMs exhibited an excellent biocompatibility on intestinal HT-29 cells at concentrations up to 2000 µg/mL. SLMs containing GSH alone or together with another antioxidant agent (catalase) were effective in reducing intracellular reactive oxygen species (ROS) levels. Overall, this study indicated that spray congealed SLMs are a promising oral drug delivery system for the encapsulation of one or more biological antioxidant agents for local intestinal treatment

    Bipartite quantum states and random complex networks

    Full text link
    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs we derive an analytic expression for the averaged entanglement entropy Sˉ\bar S while for general complex networks we rely on numerics. For large number of nodes nn we find a scaling Sˉclogn+ge\bar{S} \sim c \log n +g_e where both the prefactor cc and the sub-leading O(1) term geg_e are a characteristic of the different classes of complex networks. In particular, geg_e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool in the analysis of large complex networks with non-trivial topological properties.Comment: 4 pages, 3 figure

    NaDES as a green technological approach for the solubility improvement of BCS class II APIs: An insight into the molecular interactions

    Get PDF
    Recently, Natural Deep Eutectic Solvents (NaDES) have emerged as potential solvents for boosting drug bioavailability. In this work, the mechanism of solubility enhancement of some APIs belonging to BCS class II (tolbutamide, nimesulide, domperidone and cinnarizine) in these eutectic bio-solvents was investigated in order to get deeper insights into the molecular interactions between the NaDES components and the selected drugs. Different NaDES formulations based on choline chloride, proline, solid organic acids (citric, tartaric and malic acid), sugars (glucose and xylitol) and water were prepared by mild heating (70 °C). Characterization of unloaded NaDES (pH, Karl Fisher titration, viscosity and FTIR analysis) indicated that the type of Hydrogen Bond Acceptor (HBA) and Hydrogen Bond Donor (HBD), their molar ratio as well as water amount strongly affect the extent of H-bonding interactions. Hard gelatin capsules filled with NaDES maintained their integrity until 6 months, proving that all water molecules participate in H-bond network. APIs' solubility enhancement was significant in all NaDES with respect to buffer solutions (pH 1.2 and 6.8). Analysing NaDES having Choline as HBA, it was found that the solubility of smaller molecules increased using larger HBD, while higher molecular weight APIs can be better inserted into the network formed by smaller HBD. NOE experiments demonstrated the formation of a robust supramolecular structure among the protons of choline, those of organic acid and water. In addition, 1D ROESY spectra revealed for the first time the crucial role of choline (methyl groups) in establishing hydrophobic interactions with the relative aliphatic or aromatic portion of the drugs. These data suggest the complex structure of the API-NaDES supramolecular assembly and underline that drug solubility is dependent on a balance network of H-bonds and hydrophobic interactions as well. Understanding the type of interactions between the API and NaDES is essential for their use as effective solubilisation aid

    A note on perturbation series in supersymmetric gauge theories

    Full text link
    Exact results in supersymmetric Chern-Simons and N=2 Yang-Mills theories can be used to examine the quantum behavior of observables and the structure of the perturbative series. For the U(2) x U(2) ABJM model, we determine the asymptotic behavior of the perturbative series for the partition function and write it as a Borel transform. Similar results are obtained for N=2 SU(2) super Yang-Mills theory with four fundamental flavors and in N=2* super Yang-Mills theory, for the partition function as well as for the expectation values for Wilson loop and 't Hooft loop operators (in the 0 and 1 instanton sectors). In all examples, one has an alternate perturbation series where the coefficient of the nth term increases as n!, and the perturbation series are Borel summable. We also calculate the expectation value for a Wilson loop operator in the N=2* SU(N) theory at large N in different regimes of the 't Hooft gauge coupling and mass parameter. For large masses, the calculation reproduces the running gauge coupling for the pure N=2 SYM theory.Comment: 28 pages. V2: minor additions and reference adde

    Wilson Loops in N=2 Super-Yang-Mills from Matrix Model

    Full text link
    We compute the expectation value of the circular Wilson loop in N=2 supersymmetric Yang-Mills theory with N_f=2N hypermultiplets. Our results indicate that the string tension in the dual string theory scales as the logarithm of the 't Hooft coupling.Comment: 37 pages, 9 figures; v2: Numerical factors corrected, simple derivation of Wilson loop and discussion of continuation to complex lambda added; v3: instanton partition function re-analyzed in order to take into account a contribution of the hypermultiplet

    Gauge Theory Wilson Loops and Conformal Toda Field Theory

    Full text link
    The partition function of a family of four dimensional N=2 gauge theories has been recently related to correlation functions of two dimensional conformal Toda field theories. For SU(2) gauge theories, the associated two dimensional theory is A_1 conformal Toda field theory, i.e. Liouville theory. For this case the relation has been extended showing that the expectation value of gauge theory loop operators can be reproduced in Liouville theory inserting in the correlators the monodromy of chiral degenerate fields. In this paper we study Wilson loops in SU(N) gauge theories in the fundamental and anti-fundamental representation of the gauge group and show that they are associated to monodromies of a certain chiral degenerate operator of A_{N-1} Toda field theory. The orientation of the curve along which the monodromy is evaluated selects between fundamental and anti-fundamental representation. The analysis is performed using properties of the monodromy group of the generalized hypergeometric equation, the differential equation satisfied by a class of four point functions relevant for our computation.Comment: 17 pages, 3 figures; references added
    corecore