22 research outputs found

    Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico

    Get PDF
    Sea level rise (SLR) has the potential to affect coastal environments in a multitude of ways, including submergence, increased flooding, and increased shoreline erosion. Low-lying coastal environments such as the Northern Gulf of Mexico (NGOM) are particularly vulnerable to the effects of SLR, which may have serious consequences for coastal communities as well as ecologically and economically significant estuaries. Evaluating potential changes in tidal hydrodynamics under SLR is essential for understanding impacts to navigation, ecological habitats, infrastructure and the morphologic evolution of the coastline. The intent of this research is to evaluate the dynamic effects of SLR and coastal geomorphology on tidal hydrodynamics along the NGOM and within three National Estuarine Research Reserves (NERRs), namely Grand Bay, MS, Weeks Bay, AL, and Apalachicola, FL. An extensive literature review examined the integrated dynamic effects of SLR on low gradient coastal landscapes, primarily in the context of hydrodynamics, coastal morphology, and marsh ecology. Despite knowledge of the dynamic nature of coastal systems, many studies have neglected to consider the nonlinear effects of SLR and employed a simplistic bathtub approach in SLR assessments. More recent efforts have begun to consider the dynamic effects of SLR (e.g., the nonlinear response of hydrodynamics under SLR); however, little research has considered the integrated feedback mechanisms and co-evolution of multiple interdependent systems (e.g., the nonlinear responses and interactions of hydrodynamics and coastal morphology under SLR). Synergetic approaches that integrate the dynamic interactions between physical and ecological environments will allow for more comprehensive evaluations of the impacts of SLR on coastal systems. Projecting future morphology is a challenging task; various conceptual models and statistical methods have been employed to project future shoreline positions. Projected shoreline change rates from a conceptual model were compared with historic shoreline change rates from two databases along sandy shorelines of the. South Atlantic Bight and NGOM coasts. The intent was not to regard one method as superior to another, but rather to explore similarities and differences between the methods and offer suggestions for projecting shoreline changes in SLR assessments. The influence of incorporating future shoreline changes into hydrodynamic modeling assessments of SLR was evaluated for the NGOM coast. Astronomic tides and hurricane storm surge were simulated under present conditions, the projected 2050 sea level with present-day shorelines, and the projected 2050 sea level with projected 2050 shorelines. Results demonstrated that incorporating shoreline changes had variable impacts on the hydrodynamics; storm surge was more sensitive to the shoreline changes than astronomic tides. It was concluded that estimates of shoreline change should be included in hydrodynamic assessments of SLR along the NGOM. Evaluating how hydrodynamics have been altered historically under a changing landscape in conjunction with SLR can provide insight to future changes. The Grand Bay estuary has undergone significant landscape changes historically. Tidal hydrodynamics were simulated for present and historic conditions (dating back to 1848) using a hydrodynamic model modified with unique sea levels, bathymetry, topography, and shorelines representative of each time period. Changes in tidal amplitudes varied across the domain. Harmonic constituent phases sped up from historic conditions. Tidal velocities in the estuary were stronger historically, and reversed from being flood dominant in 1848 to ebb dominant in 2005. To project how tidal hydrodynamics may be altered under future scenarios along the NGOM and within the three NERRs, a hydrodynamic model was used to simulate present (circa 2005) and future (circa 2050 and 2100) astronomic tides. The model was modified with projections of future sea levels as well as shoreline positions and dune elevations obtained from a Bayesian network (BN) model. Tidal amplitudes within some of the embayments increased under the higher SLR scenarios; there was a high correlation between the change in the inlet cross-sectional area under SLR and the change in the tidal amplitude within each bay. Changes in harmonic constituent phases indicated faster tidal propagation in the future scenarios within most of the bays. Tidal velocities increased in all of the NERRs which altered flood and ebb current strengths. The work presented herein improves the understanding of the response of tidal hydrodynamics to morphology and SLR. This is beneficial not only to the scientific community, but also to the management and policy community. These findings will have synergistic effects with a variety of coastal studies including storm surge and biological assessments of SLR. In addition, findings can benefit monitoring and restoration activities in the NERRs. Ultimately, outcomes will allow coastal managers and policy makers to make more informed decisions that address specific needs and vulnerabilities of each particular estuary, the NGOM coastal system, and estuaries elsewhere with similar conditions

    Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 4 (2016): 143–158, doi:10.1002/2015EF000331.Predictions of coastal evolution driven by episodic and persistent processes associated with storms and relative sea-level rise (SLR) are required to test our understanding, evaluate our predictive capability, and to provide guidance for coastal management decisions. Previous work demonstrated that the spatial variability of long-term shoreline change can be predicted using observed SLR rates, tide range, wave height, coastal slope, and a characterization of the geomorphic setting. The shoreline is not sufficient to indicate which processes are important in causing shoreline change, such as overwash that depends on coastal dune elevations. Predicting dune height is intrinsically important to assess future storm vulnerability. Here, we enhance shoreline-change predictions by including dune height as a variable in a statistical modeling approach. Dune height can also be used as an input variable, but it does not improve the shoreline-change prediction skill. Dune-height input does help to reduce prediction uncertainty. That is, by including dune height, the prediction is more precise but not more accurate. Comparing hindcast evaluations, better predictive skill was found when predicting dune height (0.8) compared with shoreline change (0.6). The skill depends on the level of detail of the model and we identify an optimized model that has high skill and minimal overfitting. The predictive model can be implemented with a range of forecast scenarios, and we illustrate the impacts of a higher future sea-level. This scenario shows that the shoreline change becomes increasingly erosional and more uncertain. Predicted dune heights are lower and the dune height uncertainty decreases.This work was supported by the USGS Coastal and Marine Geology Program and the USGS Southeast Regional Assessment Project

    Tidal Asymmetry Analysis of the Grand Bay, Ms Estuarine System and its Effects on Sediment Transport

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Hydrodynamic Assessment of Natural and Nature-Based Features for Escatawpa River and Grand Bay in the Northern Gulf of Mexico

    Get PDF
    This presentation showcases a hydrodynamic assessment of natural and nature-based features (NNBFs) for the Pascagoula River, the Escatawpa River and Grand Bay, located along the Mississippi coast of the northern Gulf of Mexico. Two separate NNBF projects are being considered to: (1) restore the historical footprint (ca. 1848) of Grand Batture Island for coastal protection purposes; and (2) reconnect the hydraulics between the Escatawpa River and Grand Bay for ecosystem services purposes. The intended coastal protection benefits of the first project include buffering agency to wave attack and attenuation of storm surge with the restored island. The intended ecosystem services benefits of the second project include replenishment of sediments to the salt marsh via increased hydroperiod (duration of tidal inundation) and availability for sediment accumulation. Astronomic tide and storm surge simulations are performed with the advanced circulation (ADCIRC) plus simulating waves nearshore (+SWAN) model to evaluate the hydrodynamic impact of the NNBF projects (Image). The simulated hydrodynamics are assessed firstly in terms of storm surge and waves for the open coast with and without the restoration of Grand Batture Island (Passeri et al., 2015), and secondly for tidal datums and inundation extent for the salt marsh with and without the hydraulic reconnection of the Escatawpa River with Grand Bay (Alizad et al., 2018). A key outcome from the analysis is the interconnectedness of the hydrodynamics within the system, where the implementation of the NNBFs results in local and non-local impacts. The numerical modeling approach with high-resolution feature definition at a system-wide scale affords such methodical evaluation of NNBFs for ecosystem restoration

    The Dynamic Effects of Sea Level Rise on Low‐Gradient Coastal Landscapes: A Review

    Get PDF
    Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shore-line erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond non additively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea lev-els, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecol-ogy to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems

    The Dynamic Effects of Sea Level Rise on Low-Gradient Coastal Landscapes: A Review

    Get PDF
    Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shoreline erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond nonadditively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea levels, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecology to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems

    Integrated Modeling of Dynamic Marsh Feedbacks and Evolution Under Sea-Level Rise in a Mesotidal Estuary (Plum Island, MA, USA)

    Get PDF
    Around the world, wetland vulnerability to sea-level rise (SLR) depends on different factors including tidal regimes, topography, creeks and estuary geometry, sediment availability, vegetation type, etc. The Plum Island estuary (PIE) is a mesotidal wetland system on the east coast of the United States. This research applied a newly updated Hydro-MEM (integrated hydrodynamic-marsh) model to assess the impacts of intermediate-low (50 cm), intermediate (1 m), and intermediate-high (1.5 m) SLR on marsh evolution by the year 2100. Model advancements include capturing vegetation change, inorganic and below and aboveground organic matter portion of marsh platform accretion, and mudflat creation. Although the results indicate a low vulnerability marsh at the PIE, the vegetation changes from high to low marsh under all SLR scenarios (2%–22%), with the higher bounds belonging to higher rise scenarios. Lower SLR produces more productive marsh (13% gain in high productivity regions), whereas the highest SLR scenario causes increased tidal inundation, which leads to loss in productivity (12% change from high to low productivity regions), generation of mudflats (17% of the domain land), and marsh migration to higher lands. Sensitive nonlinear tidal flow changes, which may be increased or decreased with SLR as a result of mudflat creation, marsh migration, and bottom friction change, emphasize the importance of integrated modeling approaches that include dynamic marsh feedbacks in hydrodynamic modeling and varying hydrodynamic effects on the marsh system

    Modeling the effects of interior headland restoration on estuarine sediment transport processes in a marine-dominant estuary

    Get PDF
    The effects of interior headland restoration on estuarine sediment transport processes were assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) were modeled using Delft3D to understand impacts on suspended sediment concentrations, bed level morphology, and sediment fluxes under present-day conditions and a sea level rise (SLR) of 0.5 m, representing a high projection of SLR by the year 2050. Model results showed localized differences in bed levels near the restored features after a year of simulated morphologic change. The restored headland features acted as a sediment source to the immediate surroundings while also providing some non-significant sheltering effect of backshore shoals and marsh shorelines. Sediment fluxes were sensitive to wind directions and the presence of the restored headlands. However, regardless of wind direction, mean sea level, or restoration action, the greatest sediment fluxes were always export fluxes from the estuary, which were further increased with increased sea level. Suspended sediment concentrations were highly influenced by SLR in a non-linear manner. Sediment concentrations both increased and decreased depending on depth under SLR. Furthermore, SLR allowed for the suspension and deposition of sediments on the marsh platform. Overall, the influence of SLR was more impactful to changing sediment dynamics than the influence of the restoration features

    Tidal Hydrodynamics Under Future Sea Level Rise and Coastal Morphology in the Northern Gulf of Mexico

    Get PDF
    This study examines the integrated influence of sea level rise (SLR) and future morphology on tidal hydrodynamics along the Northern Gulf of Mexico (NGOM) coast including seven embayments and three ecologically and economically significant estuaries. A large-domain hydrodynamic model was used to simulate astronomic tides for present and future conditions (circa 2050 and 2100). Future conditions were simulated by imposing four SLR scenarios to alter hydrodynamic boundary conditions and updating shoreline position and dune heights using a probabilistic model that is coupled to SLR. Under the highest SLR scenario, tidal amplitudes within the bays increased as much as 67% (10.0 cm) because of increases in the inlet cross-sectional area. Changes in harmonic constituent phases indicated that tidal propagation was faster in the future scenarios within most of the bays. Maximum tidal velocities increased in all of the bays, especially in Grand Bay where velocities doubled under the highest SLR scenario. In addition, the ratio of the maximum flood to maximum ebb velocity decreased in the future scenarios (i.e., currents became more ebb dominant) by as much as 26% and 39% in Weeks Bay and Apalachicola, respectively. In Grand Bay, the flood-ebb ratio increased (i.e., currents became more flood dominant) by 25% under the lower SLR scenarios, but decreased by 16% under the higher SLR as a result of the offshore barrier islands being overtopped, which altered the tidal prism. Results from this study can inform future storm surge and ecological assessments of SLR, and improve monitoring and management decisions within the NGOM

    Marine Tar Residues: a Review

    Get PDF
    Abstract Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean envi-ronment indefinitely, decomposing or becoming buried in the sea floor. However, in many cases, they are transported ashore via currents and waves where they pose a concern to coastal recreation activities, the seafood industry and may have negative effects on wildlife. This review summarizes the current state of knowledge on marine tar residue formation, transport, degradation, and distribution. Methods of detection and removal of marine tar residues and their possible ecological effects are discussed, in addition to topics of marine tar research that warrant further investigation. Emphasis is placed on ben-thic tar residues, with a focus on the remnants of the Deepwater Horizon oil spill in particular, which are still affecting the northern Gulf of Mexico shores years after the leaking submarine well was capped
    corecore