164 research outputs found
Linkages between East Antarctic Ice Sheet Extent and Southern Ocean Temperatures Based on a Pliocene High‐resolution Record of Ice‐rafted Debris off Prydz Bay, East Antarctica
[1] Ice‐rafted debris mass accumulation rates (IRD MAR) at a drill site on the Antarctic continental margin are investigated to evaluate the linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures in the early to mid‐Pliocene. ODP Site 1165 is within 400 km of the Antarctic coastline and in the direct pathway of icebergs released by the Amery Ice Shelf. The Amery Ice Shelf is the largest ice shelf in East Antarctica and it buttresses the Lambert Glacier drainage system, which accounts for 14% of the outflow from the East Antarctic Ice Sheet. IRD MAR were low during peak Southern Ocean warming in the early Pliocene. After a brief precursor, a tenfold increase in IRD MAR at 3.3 Ma marks the termination of the early Pliocene ice sheet minimum, coincident with the M2 glacial. For the mid‐Pliocene, a strong correlation exists between the high‐amplitude signal in the LR04 benthic stack and IRD MAR, suggesting linkages between East Antarctic ice extent, global ice volume and deep‐water temperatures. The IRD record at Site 1165 provides evidence of greater sensitivity of the Lambert Glacier‐Amery Ice Shelf system to Southern Ocean warming than is currently predicted by ice sheet models, which may relate to uncertainties in the understanding of ocean heat uptake, poleward heat transport and ice sheet‐ocean interactions
How Do Polar Ice Sheets and Sea Level Behave Under a Changing Climate?
Nearly 3 billion people live within 100 km of the coastline, many in large urban centers. In predictions of sea level rise, the future role of polar ice sheets is one of the most critical uncertainties under the present extreme rise in greenhouse forcing of the climate system. This talk will show how geoscientists address the Earth system processes involved in melting ice sheets under warmer climates, and introduce the objectives of an upcoming deepsea drilling expedition to the area with greatest ice loss in West Antarctica
Observations of Sand Waves, Megaripples, and Hummocks in the Dutch Coastal Area and their Relation to Currents and Combined Flow Conditions
[1] This paper aims to investigate the distribution and stability of large‐scale bed forms in response to storm and fair‐weather conditions in a shallow marine environment. Multibeam and side‐scan sonar data off the Dutch coast (median grain size 0.25–0.35 mm) were collected to monitor sand waves (λ = 100–800 m) and superimposed megaripples (λ = 1–40 m) through multiple storm and fair‐weather events. Box cores were used to observe the vertical bed structure and grain size. In the Dutch coastal area, two‐dimensional (2‐D) megaripples (λ = 1–15 m) are the dominant bed forms in current‐dominated (\u3e0.4 m/s) tidal flow regimes with oscillatory flowsLanice conchilegacolonies on bed form development are suspected but need further study. At slightly higher energy conditions, 3‐D megaripples (λ = 5–15 m) begin to form on the shoreface. After seasonal storms, at oscillatory flows \u3e0.4 m/s, undulating bed topography of mound‐like 3‐D bed forms (λ = 20–40 m) is observed. Immediately after storms, these bed forms are covered by smaller 3‐D megaripples, which are related to sets of low‐angle converging laminae in box cores, interpreted as hummocky cross stratification (HCS). The sand waves form compound bed forms of sets of 2‐D and 3‐D megaripples. The morphology of the sand waves is a function of the general wind‐wave climate of the marine environmental setting, with flat‐topped 3‐D sand waves occurring in shallow wave‐dominated settings and 2‐D sand waves occurring in the tide‐dominated environment farther offshore
A sub-millennial sediment record of ice-stream retreat and meltwater storage in the Baltic Ice Lake during the Bølling-Allerød interstadial
The rapid retreat of the Baltic Ice Stream and the development of the Baltic Ice Lake is assessed using data from sediment cores retrieved from three sub-basins in the southern Baltic Sea. Hydraulic piston coring by the International Ocean Discovery Program (IODP) recovered for the first time intact glacial lake sequences overlying diamictons and other ice-contact deposits at Sites M0063, M0064 and M0065. Based on the particle size and bulk sediment chemical composition the glacial lake sediments were subdivided into a proximal and a distal varve sequence. The origin of a dark, lithologically distinct horizon between the proximal and distal varves is attributed to a lake drainage event following the opening of a spillway in central Sweden. Available age constraints suggest that the Baltic Ice Lake developed during the Bølling-Allerød interstadial and reached its maximum size at ~13 ka. Ice retreat was forced by surface melt, and amplified by calving in the upstream deepening lake environment. Furthermore, rapid ice retreat and glacio-isostatic processes allowed for the storage of substantial amounts of meltwater in the Baltic Ice Lake during the Allerød warm period. Subsequent lake drainage into the North Atlantic took place through a conduit at higher latitude than previous drainage pathways. The pronounced changes in meltwater storage and routing caused by the rapid retreat of the Baltic Ice Stream may have contributed to abrupt climate change through the effects of changing freshwater supply on Atlantic overturning circulation
Orbitally Paced Shifts in the Particle Size of Antarctic Continental Shelf Sediments in Response to Ice Dynamics during the Miocene Climatic Optimum
The AND-2A drill hole (ANDRILL [Antarctic Geological Drilling Program] Southern McMurdo Sound Project), ∼10 km from the East Antarctica coastline, records nearly 6 m.y. of sedimentation across the Miocene climatic optimum at a high-latitude site. Sedimentological studies of bedforms and particle size distributions indicate that the paleoenvironment was strongly affected by waves and currents, consistent with deposition in a glacially influenced neritic environment. We document abrupt shifts in mud percent within glacial-interglacial cycles ca. 17.8 Ma and between ca. 16.7 and 15.7 Ma that we attribute to the hydrodynamic effects of wave stirring tied to episodes of ice growth and decay. Although wave climate and geodynamic forcing of the paleobathymetry simultaneously affect wave stirring on a high-latitude shelf, both are ultimately controlled by the size of the ice sheet. The mud percent record displays cyclicity at short-eccentricity time scales (94–99 k.y.) and, unexpectedly, ice retreat phases interpreted from the particle size record coincide with eccentricity minima. We attribute the eccentricity-paced ice retreat phases during the late Early Miocene polythermal glacial conditions and the cool orbital parameters to marine ice sheet instability in response to changes in ocean circulation and heat transport. The particle size record of the AND-2A core provides unique near-field evidence for orbitally paced changes in high-latitude climate and ice volume during the Miocene climatic optimum and important insights into the mechanisms of ice sheet growth and decay in a period of global warmth
Early Miocene Antarctic glacial history: New insights from heavy mineral analysis from ANDRILL AND–2A drill core sediments
The present study deals with heavy mineral analysis of late Early Miocene marine sediments recovered in the McMurdo Sound region (Ross Sea, Antarctica) during the ANDRILL— SMS Project in 2007. The main objective is to investigate how heavy mineral assemblages reflect different source rocks and hence different provenance areas. These data contribute to a better understanding of East Antarctica ice dynamics in the Ross Sea sector during the Early Miocene (17.6–20.2 Ma), a time of long-term global warming and sea level rise. The AND-2A drill core recovered several stratigraphic intervals that span from Early Miocene to Pleistocene and it collected a variety of terrigenous lithologies. The heavy mineral assemblages of the lower 650-m-thick sedimentary succession were analyzed through SEM observations and SEM–EDS microanalyses on heavy mineral grains. The heavy mineral analysis shows that the sediments are a mix of detritus dominated by McMurdo Volcanic Group sources most likely located in the present-day Mount Morning area (Proto-Mount Morning) with minor contribution from Transantarctic Mountains source rocks located west of the drill site. The heavy mineral assemblages in Interval 1 indicate that between 20.2 and 20.1 Ma, the grounding line of the ice sheet advanced to a position near the present-day Mount Morning volcanic center. During deposition of Interval 2 (20.1–19.3 Ma), the ice sheet most likely experienced a dynamic behavior with interval of ice advance alternating with periods of ice retreat, while Interval 3 (19.3–18.7 Ma) records further retreat to open water conditions. A dynamic behavior is noted in Interval 4 (18.7–17.6 Ma) with a decreasing contribution of materials derived from the basalts of the Mount Morning volcanic center located to the south of the drill site and a consequent increasing contribution of materials derived from the Transantarctic Mountains to the west of the drill site
Threshold Behavior of a Marine‐based Sector of the East Antarctic Ice Sheet in Response to Early Pliocene Ocean Warming
We investigate the stability of the East Antarctic Ice Sheet (EAIS) on the Wilkes Land continental margin, Antarctica, utilizing a high‐resolution record of ice‐rafted debris (IRD) mass accumulation rates (MAR) from Integrated Ocean Drilling Program Site U1359. The relationship between orbital variations in the IRD record and climate drivers was evaluated to capture changes in the dynamics of a marine‐based ice sheet in response to early Pliocene warming. Three IRD MAR excursions were observed and confirmed via scanning electron microscope microtextural analysis of sand grains. Time series analysis of the IRD MAR reveals obliquity‐paced expansions of the ice sheet to the outer shelf prior to ~4.6 Ma. A decline in the obliquity and a transition into a dominant precession response of IRD MAR occur at ~4.6 Ma along with a decline in the amplitude of IRD MAR maxima to low background levels between ~4.0 and ~3.5 Ma. We speculate that as sea surface temperatures began to peak above 3°C during the early Pliocene climatic optimum, the ice shelves thinned, leading to a greater susceptibility to precession‐forced summer insolation and the onset of persistent retreat of a marine‐based portion of the EAIS
Microfeatures of Modern Sea-ice-rafted Sediment and Implications for Paleo-sea-ice Reconstructions
Distinguishing sea-ice-rafted debris (SIRD) from iceberg-rafted debris is crucial to an interpretation of ice-rafting history; however, there are few paleo-sea-ice proxies. This study characterizes quartz grain microfeatures of modern SIRD from the Arctic Ocean, and compares these results with microfeatures from representative glacial deposits to potentially differentiate SIRD from ice-rafted sediments which have been recently subjected to glacial processes. This allows us to evaluate the use of grain microfeatures as a paleo-sea-ice proxy. SIRD grains were largely subrounded, with medium relief, pervasive silica dissolution and a high abundance of breakage blocks and microlayering. The glacial grains were more angular, with lower relief and higher abundances of fractures and striations/gouges. Discriminate analysis shows a distinct difference between SIRD and glacial grains, with ˂7% of the SIRD grains containing typical glacial microtextures, suggesting this method is a useful means of inferring paleo-sea-ice presence in the marine record. We propose that differences in microfeatures of SIRD and glacial ice-rafted debris reflect differences in sediment transport and weathering histories. Sediment transported to a coastal setting and later rafted by sea ice would be subject to increased chemical weathering, whereas glaciers that calve icebergs would bypass the coastal marine environment, thus preserving their glacial signature
Pliocene anisotropy of magnetic susceptibility (AMS) and diatom stratigraphy from the Wilkes Land margin
第3回極域科学シンポジウム 横断セッション「海・陸・氷床から探る後期新生代の南極寒冷圏環境変動」11月26日(月)、27日(火) 2階ラウン
A Sedimentological Record of Early Miocene Ice Advance and Retreat, AND-2A drill hole, McMurdo Sound, Antarctica
The lowest 501 m (∼1139–638 m) of the AND-2A core from southern McMurdo Sound is the most detailed and complete record of early Miocene sediments in Antarctica and indicates substantial variability in Antarctic ice sheet activity during early Miocene time. There are two main pulses of diamictite accumulation recorded in the core, and three significant intervals with almost no coarse clasts. Each diamictite package comprises several sequences consistent with ice advance-retreat episodes.
The oldest phase of diamictite deposition, Composite Sequence 1 (CS1), has evidence for grounded ice at the drill site and has been dated around 20.2–20.1 Ma. It likely coincides with cooling associated with isotope event Mi1aa. This is overlain by a diamictite-free, sandstone-dominated interval, CS2 that includes three coarsening-upward deltaic cycles, is inferred to mark substantial warming, and has an inferred age range between 20.1 and 20.05 Ma. Above this is an interval with variable amounts of diamictite (CS3), with indicators of ice grounding, that is inferred to record ice advance relative to CS2, and is overlain by an ∼100-m-thick mud-rich interval (CS4) with no sedimentological evidence for direct glacial influence at the drill site (ca. 19.4–18.7 Ma). A third overlying diamictite-rich interval (CS5) overlies an unconformity spanning 18.7–17.8 Ma (coinciding with isotope event Mi1b), and records a return to more ice-influenced conditions at the drill site in late early Miocene time. The overall picture for the early Miocene (spanning the period 20.2–17.35 Ma) is one of ice advance alternating with periods of ice retreat and hence significant global climate fluctuations after the permanent establishment of the Antarctic ice sheet at the Eocene/Oligocene boundary, and preceding the relative warmth of the middle Miocene climatic optimum (ca. 17.5–14.5 Ma).
Sedimentary cyclicity in CS1 and CS2 is consistent with ∼21 k.y. precession but in CS3 the frequency is closer to 100 k.y. (consistent with eccentricity), with a possible change to 20 k.y. precession in CS4. CS5 cyclicity is consistent with obliquity forcing. Provenance data are consistent with local Transantarctic Mountains glacial activity under precessional control in CS1 and more southerly ice-cap build up under 100 k.y. eccentricity and obliquity control during CS3 and CS5, respectively
- …