57 research outputs found

    The Endocannabinoid-Like Derivative Oleoylethanolamide at the Gut–Brain Interface: A “Lipid Way” to Control Energy Intake and Body Weight

    Get PDF
    In the last three decades, we witnessed a concomitant major increase in lifespan and a worldwide increasing incidence of chronic diseases such as obesity and type 2 diabetes. Disruption of energy homeostasis and systemic inflammation appear as common traits of these epidemic human diseases. The conventional endocannabinoid (eCB) system encompasses two G-protein–coupled receptors (GPCRs), their endogenous ligands (anandamide and 2-AG), and the enzymes essential for eCB biosynthesis and hydrolytic inactivation. Nonetheless, the family of eCB-like derivatives is growing constantly including other N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs) that do not bind canonical CB receptors rather other orphan G-protein–coupled receptors or peroxisome proliferator-activated nuclear receptors (PPARs). Here, we focus on the recent knowledge gathered on one such PPAR endocannabinoid ligand, oleoylethanolamide (OEA), from the identification of its synthesis in the small intestine to its anorexiant function with particular emphasis on our discovery of the main brain neurotransmitters system involved in its satiating effects

    Brain histamine and behavioral neuroscience

    Get PDF

    Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation

    Get PDF
    Abstract The role of the nucleus basalis magnocellularis (NBM) in fear conditioning encoding is well established. In the present report, we investigate the involvement of the NBM histaminergic system in consolidating fear memories. The NBM was injected bilaterally with ligands of histaminergic receptors immediately after contextual fear conditioning. Histaminergic compounds, either alone or in combination, were stereotaxically administered to different groups of adult male Wistar rats and memory was assessed as conditioned freezing duration 72 h after administration. This protocol prevents interference with NBM function during either acquisition or retrieval phases, hence restricting the effect of pharmacological manipulations to fear memory consolidation. The results presented here demonstrate that post-training H3 receptors (H3R) blockade with the antagonist/inverse agonist thioperamide or activation with immepip in the NBM potentiates or decreases, respectively, freezing response at retrieval. Thioperamide induced memory enhancement seems to depend on H2R, but not H1R activation, as the H2R antagonist zolantidine blocked the effect of thioperamide, whereas the H1R antagonist pyrilamine was ineffective. Furthermore, the H2R agonist ampthamine improved fear memory expression independently of the H3R agonist effect. Our results indicate that activation of post-synaptic H2R within the NBM by endogenous histamine is responsible for the potentiated expression of fear responses. The results are discussed in terms of activation of H3 auto- and heteroreceptors within the NBM and the differential effect of H3R ligands on fear memory consolidation in distinct brain regions
    • …
    corecore