49 research outputs found

    Comorbidities in Dravet Syndrome and Lennox–Gastaut Syndrome

    Get PDF
    AbstractThis study aims to describe the main cognitive and behavioral comorbidities of Dravet syndrome (DS) and Lennox–Gastaut syndrome (LGS), their impact on the health-related quality of life (QOL) of patients and their caregivers, and provide a summary of the neuropsychological tools available for the evaluation of these comorbidities. The cognitive and behavioral comorbidities in patients with DS and LGS have a profound effect on the QOL of affected individuals and their caregivers and, as patients grow, tend to surpass the impact of the seizures. DS is a genetic condition associated with loss-of-function mutations in the SCNA1 sodium channel gene; LGS is an etiologically heterogeneous condition that is often secondary to structural brain abnormalities. The first seizures associated with DS typically present in the first year of life, and developmental delay becomes progressively evident thereafter. LGS usually starts between the ages of 3 and 8 years, with cognitive impairment becoming clinically evident in most patients within 5 years from the onset. In both DS and LGS, cognitive impairment is generally moderate to severe and is often accompanied by behavioral problems such as hyperactivity and inattention. In addition to optimal seizure control, regular assessment and active management of cognitive and behavioral comorbidities are required to meet the complex needs of patients with DS or LGS

    Scientific opinion on flavouring group evaluation 415 (FGE.415): (E)-3-benzo[1,3]dioxol-5-yl-N,N-diphenyl-2-propenamide

    Get PDF
    The EFSA Panel on Food Additives and Flavourings (FAF) was requested to evaluate the safety of the substance (E)-3-benzo[1,3]dioxol-5-yl-N,N-diphenyl-2-propenamide [FL-no: 16.135] as a new flavouring substance, in accordance with Regulation (EC) No 1331/2008. The substance has not been reported to occur naturally and it is chemically synthesised. It is intended to be used as a flavouring substance in specific categories of food, but not intended to be used in beverages. The chronic dietary exposure to [FL-no: 16.135] estimated using the added portions exposure technique (APET), is calculated to be 780 mu g/person per day for a 60-kg adult and 480 mu g/person per day for a 15-kg 3-year-old child. [FL-no: 16.135] did not show genotoxic effects in bacterial mutagenicity and mammalian cell micronucleus assays in vitro. Developmental toxicity was not observed in a study in rats at the dose levels up to 1,000 mg/kg body weight (bw) per day. The Panel derived a BMDL of 101 mg/kg bw per day from a 90-day toxicity study. Based on this BMDL, adequate margins of exposure of 7,800 and 3,200 could be calculated for adults and children, respectively. The Panel concluded that there is no safety concern for [FL-no: 16.135], when used as a flavouring substance at the estimated level of dietary exposure calculated using the APET approach, based on the intended uses and use levels as specified in Appendix B. The Panel further concluded that the combined exposure to [FL-no: 16.135] from its use as a food flavouring substance and from its presence in toothpaste is also not of safety concern. (C) 2022 Wiley-VCH Verlag GmbH & Co. KgaA on behalf of the European Food Safety Authority

    Scientific opinion on Prosmoke BW 01

    Get PDF
    The EFSA Panel on Food Additives and Flavourings (FAF) was requested to evaluate the safety of Prosmoke BW 01 as a new smoke flavouring primary product, in accordance with Regulation (EC) No 2065/2003. Prosmoke BW01 is produced by pyrolysis of beechwood (Fagus sylvatica L.) sawdust. Its water content is estimated at 56 wt%, the total identified volatile fraction accounts for 28 wt% of the primary product, corresponding to 64% of the solvent-free mass, while the unidentified fraction amounts to 16 wt% of the primary product. Analytical data provided for three batches demonstrated that their batch-to-batch-variability was sufficiently low. However, for the batch used for the toxicological studies, there were substantial deviations in the concentration of nearly all the constituents compared to the other three batches. The dietary exposure of Prosmoke BW 01 was estimated to be between 6.2 and 9.2 mg/kg body weight (bw) per day, respectively, using SMK-EPIC and SMK-TAMDI. Using the FAIM tool, the 95th percentile exposure estimates ranged from 3.2 mg/kg bw per day for the elderly to 17.9 mg/kg bw per day for children. The Panel noted that furan-2(5H)-one is present in all batches of the primary product at an average concentration of 0.88 wt%. This substance was evaluated by the FAF Panel as genotoxic in vivo after oral exposure. The Panel considered that the (geno)toxicity studies available on the whole mixture were not adequate to support the safety assessment, due to limitations in these studies and because they were performed with a batch which may not be representative for the material of commerce. Considering that the exposure estimates for furan-2(5H)-one are above the TTC value of 0.0025 mu g/kg bw per day (or 0.15 mu g/person per day) for DNA-reactive mutagens and/or carcinogens, the Panel concluded that Prosmoke BW 01 raises a concern with respect to genotoxicity

    Scientific Guidance on the data required for the risk assessment of flavourings to be used in or on foods

    Get PDF
    Following a request from the European Commission, EFSA developed a new scientific guidance to assist applicants in the preparation of applications for the authorisation of flavourings to be used in or on foods. This guidance applies to applications for a new authorisation as well as for a modification of an existing authorisation of a food flavouring, submitted under Regulation (EC) No 1331/2008. It defines the scientific data required for the evaluation of those food flavourings for which an evaluation and approval is required according to Article 9 of Regulation (EC) No 1334/2008. This applies to flavouring substances, flavouring preparations, thermal process flavourings, flavour precursors, other flavourings and source materials, as defined in Article 3 of Regulation (EC) No 1334/2008. Information to be provided in all applications relates to: (a) the characterisation of the food flavouring, including the description of its identity, manufacturing process, chemical composition, specifications, stability and reaction and fate in foods; (b) the proposed uses and use levels and the assessment of the dietary exposure and (c) the safety data, including information on the genotoxic potential of the food flavouring, toxicological data other than genotoxicity and information on the safety for the environment. For the toxicological studies, a tiered approach is applied, for which the testing requirements, key issues and triggers are described. Applicants should generate the data requested in each section to support the safety assessment of the food flavouring. Based on the submitted data, EFSA will assess the safety of the food flavouring and conclude whether or not it presents risks to human health and to the environment, if applicable, under the proposed conditions of use

    Re-evaluation of neohesperidine dihydrochalcone (E 959) as a food additive

    Get PDF
    The present opinion deals with the re-evaluation of neohesperidine dihydrochalcone (E 959) when used as a food additive. It is obtained by catalytic hydrogenation of a flavanone - neohesperidine - which is naturally occurring and thus isolated by alcohol extraction in bitter oranges (Citrus aurantium). Based on in vivo data in rat, neohesperidine dihydrochalcone is likely to be absorbed, also in humans, and to become systemically available. It does not raise a concern regarding genotoxicity. The toxicity data set consisted of studies on subchronic and prenatal developmental toxicity. No human studies were available. The data set was considered sufficient to derive a new acceptable daily intake (ADI). Based on the weight of evidence (WoE) analysis, the Panel considered unlikely that neohesperidine dihydrochalcone would lead to adverse effects on health in animals in the dose ranges tested. The Panel also considered that a carcinogenicity study was not warranted and that the lack of human data did not affect the overall confidence in the body of evidence. The Panel derived an ADI of 20 mg/kg bodyweight (bw) per day based on a no observed adverse effect level (NOAEL) of 4,000 mg/kg bw per day from a 13-week study in rat, applying the standard default factors of 100 for inter- and intraspecies differences and of 2 for extrapolation from subchronic to chronic exposure. For the refined brand-loyal exposure assessment scenario, considered to be the most appropriate for the risk assessment, the exposure estimates at the mean ranged from < 0.01 to 0.09 mg/kg bw per day and at the 95th percentile (P95) from 0.01 to 0.24 mg/kg bw per day. Considering the derived ADI of 20 mg/kg bw per day, the exposure estimates were below the reference value in all age groups. Therefore, the Panel concluded that dietary exposure to the food additive neohesperidine dihydrochalcone (E 959) at the reported uses and use levels would not raise a safety concern

    Visual integration across fixation: automatic processes are split but conscious processes remain unified in the split-brain

    Get PDF
    The classic view holds that when “split-brain” patients are presented with an object in the right visual field, they will correctly identify it verbally and with the right hand. However, when the object is presented in the left visual field, the patient verbally states that he saw nothing but nevertheless identifies it accurately with the left hand. This interaction suggests that perception, recognition and responding are separated in the two isolated hemispheres. However, there is now accumulating evidence that this interaction is not absolute; for instance, split-brain patients are able to detect and localise stimuli anywhere in the visual field verbally and with either hand. In this study we set out to explore this cross-hemifield interaction in more detail with the split-brain patient DDC and carried out two experiments. The aim of these experiments is to unveil the unity of deliberate and automatic processing in the context of visual integration across hemispheres. Experiment 1 suggests that automatic processing is split in this context. In contrast, when the patient is forced to adopt a conscious, deliberate, approach, processing seemed to be unified across visual fields (and thus across hemispheres). First, we looked at the confidence that DDC has in his responses. The experiment involved a simultaneous “same” versus “different” matching task with two shapes presented either within one hemifield or across fixation. The results showed that we replicated the observation that split brain patients cannot match across fixation, but more interesting, that DDC was very confident in the across-fixation condition while performing at chance-level. On the basis of this result, we hypothesised a two-route explanation. In healthy subjects, the visual information from the two hemifields is integrated in an automatic, unconscious fashion via the intact splenium, and this route has been severed in DDC. However, we know from previous experiments that some transfer of information remains possible. We proposed that this second route (perhaps less visual; more symbolic) may become apparent when he is forced to use a deliberate, consciously controlled approach. In an experiment where he is informed, by a second stimulus presented in one hemifield, what to do with the first stimulus that was presented in the same or the opposite hemifield, we showed that there was indeed interhemispheric transfer of information. We suggest that this two-route model may help in clarifying some of the controversial issues in split-brain research

    Safety assessment of titanium dioxide (E171) as a food additive

    Get PDF
    Acknowledgements: The Panel wishes to thank the following for the support provided to this scientific output: Ana Campos Fernandes, Laura Ciccolallo, Esraa Elewa, Galvin Eyong, Christina Kyrkou, Irene Munoz, Giorgia Vianello, the members of the SCER Cross-cutting WG nanotechnologies: Jacqueline Castenmiller, Mohammad Chaudhry, Roland Franz, David Gott, Stefan Weigel and the former member of the SCER Cross-cutting WG Genotoxicity Maciej Stepnik. The FAF Panel wishes to acknowledge all European competent institutions, Member State bodies and other organisations that provided data for this scientific output.Peer reviewedPublisher PD
    corecore