2,267 research outputs found

    Computational analysis of transport in three-dimensional heterogeneous materials: An OpenFOAM®-based simulation framework

    Get PDF
    Porous and heterogeneous materials are found in many applications from composites, membranes, chemical reactors, and other engineered materials to biological matter and natural subsurface structures. In this work we propose an integrated approach to generate, study and upscale transport equations in random and periodic porous structures. The geometry generation is based on random algorithms or ballistic deposition. In particular, a new algorithm is proposed to generate random packings of ellipsoids with random orientation and tunable porosity and connectivity. The porous structure is then meshed using locally refined Cartesian-based or unstructured strategies. Transport equations are thus solved in a finite-volume formulation with quasi-periodic boundary conditions to simplify the upscaling problem by solving simple closure problems consistent with the classical theory of homogenisation for linear advection–diffusion–reaction operators. Existing simulation codes are extended with novel developments and integrated to produce a fully open-source simulation pipeline. A showcase of a few interesting three-dimensional applications of these computational approaches is then presented. Firstly, convergence properties and the transport and dispersion properties of a periodic arrangement of spheres are studied. Then, heat transfer problems are considered in a pipe with layers of deposited particles of different heights, and in heterogeneous anisotropic materials

    Comparison of ammoniated and nonammoniated extracts in children with latex allergy

    Get PDF
    The use of ammoniated or nonammoniated latex extracts for the diagnosis of latex allergy is still a matter of debate. The aim of our study was to compare the characteristics of the two types of extracts by immunoblotting and RAST techniques in children with ascertained latex allergy

    Multiplex Networks: A Framework for Studying Multiprocess Multiscale Connectivity Via Coupled-Network Theory With an Application to River Deltas

    Get PDF
    Transport of water, nutrients, or energy fluxes in many natural or coupled human natural systems occurs along different pathways that often have a wide range of transport timescales and might exchange fluxes with each other dynamically. Although network approaches have been proposed for studying connectivity and transport properties on single-layer networks, theories considering interacting networks are lacking. We present a general framework for transport on multiscale coupled-connectivity systems, via multilayer networks which conceptualize the system as a set of interacting networks, each arranged in a separate layer, and with interactions across layers acknowledged by interlayer links. We illustrate this framework by examining transport in river deltas as a dynamic interaction of flow within river channels and overland flow on the islands, when controlled by the flooding level. We show the potential of the framework to answer quantitative questions related to the characteristic timescale of response in the system

    Egress of non-enveloped enteric RNA viruses

    Get PDF
    A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses

    Extracellular release of the ‘differentiation enhancing factor’, a HMG1 protein type, is an early step in murine erythroleukemia cell differentiation

    Get PDF
    AbstractDifferentiation enhancing factor (DEF) is a 29 kDa protein expressed in murine erythroleukemia (MEL) cells and active in promoting a significant increase in the rate of hexamethylenebisacetamide induced differentiation of these cells. The factor was recently shown to possess an amino acid sequence identical to that reported for one of the HMG1 proteins, designated as ‘amphoterin’ on the basis of its highly dipolar sequence. In the present study, we have expressed DEF cDNA in an E. coli strain and found that the recombinant protein has functional properties identical to those observed with native DEF. Furthermore, we demonstrate that, following MEL cell stimulation with the chemical inducer, DEF is secreted in large amounts in the extracellular medium. In fact, the N-terminal sequence and the partial amino acid sequence of tryptic peptides from the secreted protein correspond to those of DEF isolated from the soluble fraction of resting MEL cells. These results are indicative for an extracellular localization as the site of action of DEF and suggest a novel function for proteins belonging to the HMG1 family. Finally, the early decay of DEF mRNA, in chemical induced MEL cells, support the hypothesis that the involvement of the enhancing factor occurs and is completed in the early phases of cell differentiation

    Investigation of TiCr Hydrogen Storage Alloy

    Get PDF
    A new reversible hydrogen storage material, based on TiCr metal alloy, is proposed. Cr and Ti were mixed and melted in a final atomic ratio of 1,78. Chemical-physical characterisations, in terms of XRD and SEM-EDX, were performed. The quantification of Laves phases was performed through Rietveld refinements. The atomic Cr/Ti ratio was determined by EDX analysis and 1,71 was obtained. The H2 sorption/desorption measurements by Sievert apparatus were carried out. After different tests varying temperature and pressure, a protocol measurement was established; and a H2 sorption value of 0,4 wt% at 200 °C/10 bar with a fast kinetic at 5 bar (Dwt% of about 0,3 wt%) were obtained. Hydrogen desorption measurements performed in the same conditions of T confirmed a totally reversible trend. A confirm of metal hydride formation was recorded by XRD, in fact, comparing X-Ray patterns before and after volumetric tests a notable difference was recorded

    A novel MEFV gene mutation (A511V) in a Chilean FMF patient

    Get PDF
    Familial Mediterranean fever (FMF) is an autosomal recessive disease which is characterized by recurrent fever and inflammation of serous membranes. A Chilean FMF patient was investigated for MEFV mutations. After DNA extraction, exons 3, 5, 10 and 30UTR region of MEFV gene were analyzed by DNA sequencing while E148Q and R202Q mutations of exon 2 weredetected by RFLP. A novel missense mutation, A511V (c.1532C>T, p.Ala511Val), was found in a heterozygous state in exon 5 of MEFV gene. Also, R202Q (c.605G>A, p.Arg202Gln) was detected in heterozygous state. R202Q was of clinical value in the diagnosis of FMF when combined with adisease causing mutation. In this patient, A511V was detected in compound heterozygous state with R202Q and this association may play an important role in FMF

    A Motivational Perspective on the Personalization of Gamification

    Get PDF
    The gamification of information systems has seen success in a variety of contexts. However, research has shown that the degree to which gamification is successful varies between individuals. The current paper evaluates the effectiveness of personalized gamification in a warehouse management context. Additionally, this paper explores why personalized gamification can be more successful than non-personalized gamification. Twenty-six subjects participated in a within-subject laboratory experiment in which goal setting and feedback game elements were integrated into a wearable management information system to examine their effect on user performance in a warehouse picking task. The effectiveness of personalized gamification was evaluated by categorizing participants into user types using the HEXAD model and examining performance across conditions and user types. Results show that user type significantly affects the relationship between game elements and user performance. This paper takes a step forward in exploring the motivational mechanisms that explain the efficacy of personalized gamification
    • …
    corecore