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Abstract Transport of water, nutrients, or energy fluxes in many natural or coupled human natural
systems occurs along different pathways that often have a wide range of transport timescales and might
exchange fluxes with each other dynamically. Although network approaches have been proposed for
studying connectivity and transport properties on single-layer networks, theories considering interacting
networks are lacking. We present a general framework for transport on multiscale coupled-connectivity
systems, via multilayer networks which conceptualize the system as a set of interacting networks, each
arranged in a separate layer, and with interactions across layers acknowledged by interlayer links. We
illustrate this framework by examining transport in river deltas as a dynamic interaction of flow within river
channels and overland flow on the islands, when controlled by the flooding level. We show the potential of
the framework to answer quantitative questions related to the characteristic timescale of response in
the system.

Plain Language Summary The physical processes that shape landscapes leave behind patterns of
connectivity along which fluxes occur via a multitude of processes, for example, flow through channels,
subsurface or overland flow. The connectivity imposed by those processes (e.g., channel networks) exerts a
significant control on the evolution and form of the underlying systems. We introduce a framework based on
coupled networks, Multiplex, that allows to quantify the connectivity properties emerging from the
simultaneous action of different processes, enabling thus to assess the overall system properties and
dynamics. We illustrate this framework by examining the case of river deltas, where intermittent flooding and
exchange of water, sediment, and nutrients between the channels and the islands maintains the delta top by
trapping sediment, stabilizing banks, and enriching rivers with carbon and nutrients. By describing the
delta system as a Multiplex—integrating the connectivity imposed by confined (in the channel network) and
overland (on the islands) flows as well as the interactions (flux exchange) between them—we show the
emergence of system transport properties and dynamics not foreseen by analyzing each process separately,
and therefore revealing key information essential to predict the system response under changing forcing.

1. Introduction

Conceptualizing connectivity within a graph theoretic framework for studying processes on the Earth’s
surface has seen increased interest over the last decades (e.g., see reviews by Phillips et al., 2015;
Heckmann et al., 2015; Passalacqua, 2017, and references within). In a graph or network, nodes represent phy-
sical locations or state variables, and links represent the direction and strength of connectivity or interaction
between nodes. In many physical systems, transport takes place by more than one mechanism, for example,
overland flow and channel flow, and over different transport pathways, for example, within the channel
network and/or within the interdispersed set of islands as overland flow, with exchange occurring between
these two interconnected systems depending on the magnitude of the system forcing and possibly local
conditions. To represent such a process within a network framework requires conceptualizing it as a system
of distinct networks, each with different transport properties, and with interaction allowed between networks
to accommodate the flux exchange. It is expected that considering the overall system connectivity in this
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enlarged network perspective will result in emergent transport properties and dynamics not possible to deci-
pher by analyzing each network separately, and therefore revealing key information essential to predict the
system response under changing forcing.

In recent years, a new framework that generalizes the traditional representation of networks to the so-called
multilayer networks was introduced (Boccaletti et al., 2014; De Domenico et al., 2013; Kivelä et al., 2014;
Mucha et al., 2010). A multilayer network represents the different connectivities arising from various pro-
cesses as distinct networks (layers) but allows at the same time to represent interactions between separate
layers by introducing interlayer links (across process interactions). The application of this framework has
spanned diverse disciplines ranging from social networks (e.g., propagation of information across different
social media platforms; Cozzo et al., 2013) to transportation networks (e.g., transportation in a multiplatform
system—subway and bus; De Domenico et al., 2014) and biochemical networks (e.g., spreading of two dis-
eases, which interact cooperatively; Sanz et al., 2014), to name a few. Despite the enormous potential for
the application of this framework to the study of diverse surface or subsurface processes, to the best of
our knowledge, it has not been utilized yet in the earth sciences community. One of the reasons is that the
theory of multilayer networks has been mostly developed for undirected networks, that is, when the flow
in each of the layers is not restricted to a specific direction (e.g., information flow in social networks).
However, most of the flow networks in hydrology and geomorphology have distinct directionality imposed
by topographic, hydraulic, or geologic gradients, which call for the need to extend the theory so that it inte-
grates the directionality of such systems into the current framework. This theory was recently proposed by
Tejedor et al. (2018), who provided analytical proofs and numerical evidence that in directed multiplex, inter-
mediate values of coupling between layers can accelerate the overall transport rates in the system and
reduce the timescale needed to reach an equilibrium state. The implications of this result for real systems
are important as the interplay between the timescales to equilibrium and timescales associated using system
perturbation can result in unexpected long-term system states.

The aim of this paper is to show, in a simple and physically intuitive way, the framework of directed multilayer
networks to study geophysical problems. To this end, we examine a river delta, as an example of a complex
interconnected system, where two transport mechanisms—channelized flow within the channel network
and overland flow on the islands—with very different timescales contribute significantly to the overall system
transport dynamics (Hiatt & Passalacqua, 2015). The flux exchange between these two transport mechanisms
depends on variables such as river discharge, and therefore, it is interesting to ask under what conditions and
through which local interactions (exchanges) the overall system might exhibit accelerated transport not
expected by each system alone. Quantifying the system’s response timescale as a function of the level of dis-
charge (coupling) and comparing it with the timescale of the forcings (e.g., time during which certain dis-
charge level is exceeded) can reveal important information about relevant biogeomorphic processes on
deltas, for example, sediment trapping and delivery of nutrients to the delta top promoting, by complex feed-
backs, the development of vegetation (e.g., Larsen & Harvey, 2010; Nardin & Edmonds, 2014), and nutrient
processes (e.g., Hiatt et al., 2018).

2. The Mathematical Framework: From Single-Layer to Multilayer Connectivity

Specifying the connectivity of traditional single-layer networks (referred to herein as monoplex) only
requires two indices per link (parent and child node), making matrices a suitable representation of net-
works. Thus, the connectivity structure of a graph consisting of N nodes interconnected by links can be
uniquely specified by a square N × N matrix called Adjacency matrix (A), whose entry auv is a nonnegative
number (strength of the connection) if there exists a (vu) link from node v to node u, and 0 otherwise. For
multilayer networks, two indices are not enough, since it is also necessary to specify the layers to which
each of the two nodes connected by a link belongs. Tensors are the natural generalization of matrices
when a higher dimensionality is required. Consequently, we define the multilayer Adjacency tensor M

whose entry Mαβ
uv > 0 denotes a link starting at node v at layer β and ending on node u in layer α (De

Domenico et al., 2013).

There is a specific subclass of multilayer networks called multiplex networks (hereafter referred to as multi-
plex; De Domenico et al., 2013; Gómez et al., 2013), wherein each layer consists of the same set of nodes
but possibly different topologies (set of links) and the layers interact with each other only via the

10.1029/2018GL078355Geophysical Research Letters

TEJEDOR ET AL. 9682



counterpart nodes in each layer (Figure 1a). We are especially interested in the multiplex because (1) they are
relevant to networks that are embedded in space, where interactions across layers are not expected to
happen between distant nodes but only between counterpart nodes in the different layers (e.g., in deltas,
the exchange of fluxes between channels and islands occurs locally); and (2) the limitation of having the
interlayer connectivity only among counterpart nodes makes the mathematical representation of multiplex
simpler allowing us to project the Adjacency tensor in an NP × NP matrix, called supra-Adjacency matrix, A,
where N is the number of nodes per layer, and P is the number of layers. For the case of two layers, A
takes the following form:

A ¼ A 1ð Þ I

I A 2ð Þ

 !
; (1)

where I is the N × N identity matrix. Note that inA replica nodes are labeled to satisfy u + kN for k = 0,1,… P-1.
Hence, the supra-Adjacencymatrix is a block matrix, where each of the diagonal blocks encodes the intralayer
connectivity of the respective layers and the interlayer connectivity between replica nodes is represented by
the identity matrices located in the off-diagonal blocks.

Another important operator in graph theory is the Laplacian L, which is the cornerstone of spectral graph
theory. In the case of a monoplex, L is a matrix that can be solely derived from the Adjacency matrix. It is

defined as L=S � A, where S is the N × N diagonal matrix with diagonal entries svv ¼ ∑Nu¼1auv , that is, the
sum of the weights of all the links leaving node v (Note that we denote here by L what is generally known
as the out-Laplacian; Tejedor et al., 2015a). Equivalently, a supra-Laplacian matrix L can be defined for any
multiplex. For the case of two layers, L is defined as (Gómez et al., 2013; Tejedor et al., 2018):

L ¼ D1L
1ð Þ þ DXI �DXI

�DXI D2L 2ð Þ þ DXI

 !
; (2)

where D1 and D2 are intralayer diffusion coefficient of layer 1 and 2, respectively, DX is the interlayer diffusion
coefficient, and L(1) and L(2) are the Laplacian operators of the intralayer connectivity of the respective layers
as defined for the monoplex. The nomenclature of the parameters D1, D2, and DX as diffusion coefficients is
reminiscent of the interpretation of L as the diffusive operator in networks (Newman, 2010). In a more general
setting, we can interpret those coefficients as scalars that allow modifying the relative celerity of the process
of each layer and the interlayer processes.

3. A Continuous Time Markov Chain as Proxy for Flux Dynamics in River Deltas

We use a simple Continuous Time Markov Chain (CTMC) model to approximate the dynamics and relative
timescales for achieving steady state distributions when different values of coupling (flux exchange) are
assumed between the channel and island layers. The CTMC relies on several assumptions such as (i) a

Figure 1. Delta multiplex (a) Illustration of a multiplex:Multiplex are coupled multilayer networks where each layer consists
of the same set of nodes but possibly different topologies (set of links), and layers interact with each other only via replica
nodes in each layer (dashed lines) (b) Wax Lake Delta Multiplex. Illustration of the Wax Lake delta in the Louisiana coast
(United States). The delta multiplex consists of two layers: Layer 1 (bottom) accounts for the channel connectivity and layer
2 (top) represents the connectivity that arises from overland flow on islands. For more details about the multiplex structure
see supporting information.
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constant rate of transition, that is, the partition of fluxes at a given bifurcation remains constant and propor-
tional to the physical parameters of the network, for example, channel width; and (ii) the Markovian property,
that is, the downstream direction that a given package of water or sediment particles takes at a given bifurca-
tion depends only on the physical properties of that bifurcation and not on the trajectory of the package in its
journey from upstream. Despite these assumptions, CTMC offers a good first-order approximation of the
dynamics of the system.

The negative supra-Laplacian—L (see equation (2)) can be interpreted as the transition rate matrix of a
CTMC (Masuda et al., 2017; Norris, 1997). The dynamics of the corresponding Continuous Time Random
Walk (CTRW) are governed by

_p tð Þ ¼ �Lp tð Þ; (3)

where the ith component of p(t) represents the probability that the CTRW visits node i at time t.

If the directed network is strongly connected, a unique stationary distribution of probability ps, referred in the
rest of the paper as steady state, exists (see Tejedor et al., 2018, for further details) such as

Lps ¼ 0: (4)

The rate of convergence toward the steady state given by ps is exponential (asymptotically) with rate Re(Λ2),
where Λ2 is the eigenvalue with the smallest nonzero real part (Lodato et al., 2007; Masuda et al., 2017;
Tejedor et al., 2018). Equivalently, the timescale of convergence to steady state, τ, is inversely proportional
to the rate of convergence τ ∝1= Re Λ2ð Þð Þ. Note that the spectrum of eigenvalues ofL is in general complex
since it is not symmetric. Considering the definition ofL (see equation (2)), its eigenvalue spectra, and more
specifically Re(Λ2), depend on the following: (1) the topology of the connectivity of layer 1, L1, (2) the diffusion
coefficient of layer 1, D1, (3) the topology of the connectivity of layer 2, L2, (4) the diffusion coefficient of layer
2, D2, and (5) the interlayer diffusion coefficient, DX.

4. River Deltas as Multiplex Networks

River deltas are depositional landforms forming at the mouths of major rivers when sediment-laden water
slows down as it enters a body of standing water (Gilbert, 1885). Deltas contain nutrient-rich sediments that
support agriculture, their deposits are often rich in oil and hydrocarbons, and provide a variety of environ-
mental services (Barbier et al., 2011; Brondizio et al., 2016; Cohen et al., 1997; Hoanh et al., 2010;
Woodroffe et al., 2006). However, many major deltas are losing land because of the combined effects of (i)
sediment deprivation due to dams and levees construction, (ii) accelerated subsidence due to soil compac-
tion exacerbated by groundwater and/or oil extraction, and (iii) rising sea levels (Blum & Roberts, 2009;
Ericson et al., 2006; Giosan et al., 2014; Syvitski et al., 2005, 2009). Deltas consist of a network of channels that
tiles their surface and that are surrounded by islands (interchannel areas) regularly inundated by river flood-
ing and tides. A substantial progress in understanding deltaic systems can be made by studying the structure
and function of their channel networks (Morisawa, 1985; Smart & Moruzzi, 1971; Tejedor et al., 2015a, 2015b,
2016, 2017). However, it is well known that water and sediment fluxes are not only confined to the delta chan-
nel network. There are event-related, seasonal, and permanent (e.g., close to the delta shoreline) water and
sediment exchanges between channels and islands. Passalacqua (2017) described this exchange of fluxes
between channels and islands in deltas as a “leaky network” of channels and islands. The simultaneous action
of two coupled mechanisms of transport, each one with different topologies and transport properties (chan-
nelized flow in the channel network and overland flow on islands), makes deltas a prototype example that
can be described by Multiplex networks.

4.1. Wax Lake Delta as a Case Study

We use the Wax Lake Delta as a case study to show the potential of the framework for a real topology where
field measurements of transport rates are available both for channelized and overland flow. The Wax Lake
delta is a river-dominated delta located in coastal Louisiana, United States. Subaerial land developed after
the 1970s flood, and the delta has been rapidly prograding ever since (Paola et al., 2011; Roberts et al.,
1997; Shaw et al., 2013). Lidar surveys have shown that 83% of the delta top experienced aggradation
between 2009 and 2013 (Wagner et al., 2017). Primary channels transport water and sediment in the delta
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to the Atchafalaya Bay, and secondary channels connect the delta channel network to the island interiors
(Shaw et al., 2013).

Using the channel network connectivity of Wax Lake delta—channel layer (Layer 1—denoted here and
after as layer C)—together with the island connectivity—island layer (Layer 2—denoted here and after
as layer I)—(see Figure 1b and supporting information for further details about the connectivity used
and a brief discussion of the deltaic system), we examine the timescale of response of this coupled system.
Without loss of generality, we have set the value of DI = 1. The value of DC = 7 has been selected in order
to generate a timescale of transport on channels that is 3 times faster than that of the islands, which is
compatible with data collected from field campaigns (see Hiatt & Passalacqua, 2015—channels ~4.4 hr;
islands ~14.3 hr). The rate of water and sediment exchange between the channels and islands is controlled
by hydrologic (e.g., level of water discharge) and ecogeomorphic (e.g., vegetation, existence of secondary
channels connecting the channel network to the interior of the islands) attributes. The effect of vegetation
is summarized into the value of DI, that is, more vegetated islands exhibit a higher roughness and there-
fore are expected to have a lower value of the diffusion coefficient DI. Thus, the value of DX is mostly con-
trolled by the discharge level, as here other forcings such as tides and wind are ignored. Note that we
assume that the value of DX is homogeneous across the delta. This assumption is an oversimplification
given the existence of secondary channels in some of the islands, gradients in vegetation, and connectiv-
ity toward the distal part of the deltaic system, etc., and therefore, a spatially explicit modulation of this
parameter would make the model more realistic. However, for the sake of simplicity in the presentation
of the framework, we assume uniform values of DX, showing that even in this simplified scenario, interest-
ing and unexpected system-wide behaviors emerge from the coupled dynamics. This simplification also
allows us to demonstrate that the system response described below does not emerge from heterogeneity
in the spatial patterns of DX, but it is intrinsic to the coupled connectivity between the channel and island
layers. In a more general setting, the parametrization of the diffusion coefficients (DC, DI, DX) would require
identifying the main variables controlling the values of the diffusion coefficients. New approaches based
on information theory to unveil nonlinear dependencies among variables at different temporal scales
constitute a powerful toolbox for this purpose (e.g., Goodwell & Kumar, 2017; Ruddell & Kumar, 2009;
Sendrowski & Passalacqua, 2017).

As detailed in section 3, given a multiplex topology and the set of parameters (DC, DI, DX), we can compute
the timescale of convergence to steady state transport as τ ∝1= Re Λ2ð Þ. In the delta multiplex example, when
the input boundary condition (discharge at the apex) is changed, a redistribution of water, solids, and solutes
occurs in the channel-island complex. Thus, if the new boundary condition were to be kept constant, a steady
state distribution of water, sediment, nutrients, and transport rates would be eventually achieved everywhere
in the delta top. For deltas, as for many other natural systems, boundary conditions such as incoming dis-
charge vary over time. Furthermore, the characteristic time (e.g., time elapsed while a certain level of dis-
charge is exceeded) associated with that variability also involves multiple scales. For instance, we can
imagine two different scenarios where an incoming level of discharge Q is exceeded due to (i) seasonal varia-
bility (e.g., high flow conditions in winter vs low flow conditions in summer) or (ii) an extreme event (e.g.,
storm). The characteristic timescales of forcings together with the timescale of response would dictate
whether a significant reorganization of sediment and nutrients can take place, or even a new steady state
could be reached. Precisely for these reasons, we do not assume in our analysis that a steady state distribu-
tion is achieved, and therefore, we do not focus our analysis on the actual steady state distribution that would
emerge for a given boundary condition if maintained constant. Our analysis capitalizes on the potential of the
multiplex framework to estimate the overall system timescale involved in achieving the steady state. This
timescale is very relevant to diverse biogeomorphic processes because it provides themagnitude of the char-
acteristic time to achieve a substantial redistribution of sediment and nutrients on the delta top when the
boundary conditions are changed (e.g., flooding). Thus, we can interpret the timescale τ as the characteristic
response time of the delta to varying discharges.

By analyzing the behavior of τ as a function of the interlayer coupling, DX, (Figure 2a) the existence of four
regimes stands out: (1) Linear: The dynamics in the channel network and on the islands are effectively
decoupled wherein the rate of flux exchange between both layers (DX) is the limiting factor (note that the
bankfull condition does not have to be exceeded to observe flow into the islands; e.g., Hiatt & Passalacqua,
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2015). In this regime, the timescale of convergence to steady state (τ)
decreases linearly as 2DX. (2) Sublinear: The coupling between channels
and islands starts to be more significant but is limited by the slower
diffusion process in the islands. Here an increase in DX, that is, a larger
water discharge, translates into a sublinear decrease (τ ∝ D�α

X ; α < 1) in
the timescale of convergence to steady state for the overall delta. (3)

Asymptotic: For very large values of discharge (i.e., DX≫ Re λI2
� �

; Re λC2
� �

)

the two layers are completely coupled. This scenario can occur when the
water discharge is large enough to generate sheet flow on the whole
system, where the counterpart nodes in the different islands and
channels are fully synchronized, behaving as single nodes. (4) Prime: This
regime, characteristic of multiplex with directed connectivity in at least
one of its layers (Tejedor et al., 2018), occurs for intermediate values of
coupling (discharge, DX), wherein the rate of convergence in the overall
system achieves the shortest timescale, even shorter than in the
asymptotic regime. In this scenario, both islands and channels contribute
significantly to the total transport but conserving a relative degree of
independence in their internal dynamics (i.e., not fully synchronized or
decoupled). Physically, this coupling regime can be interpreted as levels
of discharge that produce rates of channel-island flux exchange similar

to the rates characteristic of channel transport
�
DX e Re λc2

� ��
. Thus,

islands although characterized by slower rates of transport, if provided
with the right amount of flux (given the ratio of channel and island
transport rates), are able to facilitate the acceleration of the overall rate
of transport alleviating bottleneck scenarios at the channels. Thus, there
exists a sweet spot for certain values of discharge (optimal coupling) for
which the timescale τ achieves its minimum, and either an increase or
decrease of discharge with respect to that optimal value would translate
in an increase of τ (decrease in the transport rate).

It is important to notice that although the parameter that controls the flux
exchange between the channel and island layers, DX, is solely interpreted
in terms of water discharge, island roughness (e.g., due to vegetation) has
been shown to effectively play a fundamental role in the water exchange
between islands and channels (Hiatt & Passalacqua, 2017). The multiplex
framework allows us to easily assess the effect of different island rough-
ness (mediated by the value of DI) in the system-wide response. When dif-
ferent scenarios of increasing island roughness (DI = 1, 0.5 and 0.1) are
explored for a constant DC = 7 (Figure 2b), the transition from the linear
to the sublinear regime shifts to smaller values of DX (discharge), acknowl-
edging the fact that the increased island roughness (i.e., lower value of DI)
makes the transport on islands the limiting factor for a larger range of dis-
charges. The immediate consequence of this shift in the transition from
linear to sublinear is that the system-wide response is significantly slowed
down for the same values of discharge under increased roughness scenar-
ios. Finally, it is also interesting to note the shift in the position of the mini-

mum timescale of convergence to steady state, τ, toward higher values of discharge (DX) when higher values
of island roughness (lower values of DI) are explored. Thus, for example, to achieve the shortest timescale of
response of the system in high roughness scenarios (DI = 0.1), a 20% increase in the discharge (DX) is neces-
sary when compared to the case of low roughness (DI = 1).

Depending on the discharge levels (for given values of DI and DC), the delta multiplex behaves as a channel-
dominated system or a coupled channel-island complex. The geomorphic (e.g., island aggradation) and
biogeochemical (e.g., vegetation types, nutrient nourishment and nitrogen fixation) consequences of

Figure 2. Flux dynamics on the Wax Lake Delta multiplex. We show for the
Wax Lake multiplex, the timescale of convergence to steady state, τ, as a
function of interlayer coupling, DX, which is mostly controlled by water dis-
charge. Panel (a) shows the emergence of a nonmonotonic behavior of τ as
function of DX, when the values of diffusivity of each layer are set to (DC,
DI) = (7, 1) to reproduce the ratio of transport timescales channel to island
reported from field campaigns. Panel (b) shows the effect of island rough-
ness (e.g., vegetation) in the response timescale of the delta multiplex. For
intermediate values of DX, the timescale of the delta multiplex τ increases for
higher island roughness—DI = 1 (solid lines), 0.5 (dashed lines), and 0.1
(dotted lines)—reducing effectively the coupling between the channels and
islands for the same values of DX.

10.1029/2018GL078355Geophysical Research Letters

TEJEDOR ET AL. 9686



operating in one or the other scenario are apparent. However, to fully evaluate the overall system behavior,
there are three relevant timescales associated with a discharge Q (Figure 3) that should be taken into

consideration: tQd is the timescale associated with the duration of the forcing, that is, the time during which

the value of Q is exceeded; tQr is the time of recurrence of the forcing of magnitude Q; and tQS is the
timescale of response of the channel-island delta system when both layers are coupled by a discharge
level Q. The multiplex framework allows to put into perspective these three timescales. Thus, the delta as a
whole would be efficient in redistributing sediments and nutrients, (i.e., it behaves as a channel-island

complex), if tQS ≤ tQd , that is, the time of response of the system is comparable with the duration of the
forcing. Thus, a deltaic system is resilient, that is, it exhibits aggradation rates that are fast enough to self-
maintain the delta and the ecosystem services that it provides, if its overall delta connectivity has evolved
to a state wherein the prime regime of transport: (1) emerges for water discharge Q (interlayer coupling)

values with a recurrence time tQr that is short enough to allow periodic redistribution of fluxes at the delta

scale and (2) characterized by small values of tQS (i.e., comparable in magnitude with the timescale of the
transport in the channels).

5. Conclusions and Perspectives

To investigate transport properties of multiprocess multiscale connected systems, we introduce the frame-
work of multilayer networks which allows to quantify properties of the system as a whole, not accessible
by studying each system separately. We illustrate this framework by examining the flux dynamics in a river
delta system, where channelized (within the channel network) and overland (on the islands) flows are con-
sidered. We represent the delta system as a two-layer multiplex, wherein each layer consists of the same
number of nodes, but the connectivity among them is different and representative of each process. The
degree of coupling among layers denotes the flux exchange in between the two transport processes, and
in this study is driven by the discharge level, although a strong control is also exerted by the relative rough-
ness of the islands (e.g., vegetation). To illustrate the potential of this framework, we investigate the timescale
of convergence to the steady state flux distribution for different degrees of coupling, revealing the existence
of four different regimes: linear, sublinear, prime, and asymptotic. We highlight that the prime regime, where
the timescale of convergence to steady state achieves its smallest value, occurs for intermediate values of
coupling, that is, not extreme values of discharge, where the redistribution of sediment and nutrients is
the fastest across the delta top, enhancing the overall system aggradation and nourishment.

The application of this framework to specific systems in a more detailed manner opens up interesting
research questions such as (1) what is the return period of the discharge that corresponds to the optimal cou-
pling (1-year event, 10-year event, etc.) and how does it affect the evolution of those systems and their resi-
lience to extreme events, (2) what specific locations of a delta might amplify across-process connectivity
critically affecting the overall system transport timescales; and (3) how is the system transport timescale
dependent on including more or less refined specification of across-process connectivity? For instance, by
accounting for vegetation, topography, etc., more layers can be included, with islands of similar
characteristics (i.e., islands that can be modeled by a similar diffusion coefficient) grouped in the same

Figure 3. The timescales associated with discharge Q. (a) tQd is the timescale associated with the duration of the for-
cing, that is, the time during which the value of Q is exceeded; (b) tQr is the time of recurrence of the forcing of
magnitude Q; and (c) tQS is the timescale of response of the channel-island delta system (see Figure 2) when both
layers are coupled by a discharge level Q.
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layer. Finally, we want to emphasize the broad applicability of this framework to diverse fields in the
geosciences where multiprocess multiscale interactions dictate the overall system behavior. Examples
include flux transport taking into account surface-subsurface exchange (Sawyer et al., 2015), integrated
wetland and river systems (Hansen et al., 2018), interaction types among species in ecological systems
(Pilosof et al., 2017), and climate networks (Donges et al., 2011).
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