701 research outputs found

    Scanning Electron Microscopy Application in Clinical Research

    Get PDF
    Our personal experience on the application of scanning electron microscopy in cardiology, gastroenterology and ophthalmology is reviewed. SEM has not yet significantly contributed to myocardium pathology. However, in the near future, SEM could be a reliable technique to complete the information available from other sources. As to atherosclerosis, SEM allowed us to improve our knowledge of the early stages of the disease; some pathological features, not always detected by conventional morphological examinations, can be documented. An important contribution to gastrointestinal pathology was made by SEM investigations both in the staging of some important diseases (i.e., coeliac disease, peptic ulcer, Crohn\u27s disease, ulcerative colitis) and in the follow-up of mucosal changes during therapy. In the ophthalmological field,SEM provided three-dimensional new information to clinicians, who are familiar with the biomicroscopic images. Our experience in hematology is still limited. However, in the lost few years SEM joined to immunocytochemistry allowed us to characterize cell populations in several blood diseases. Some procedures of particular interest in the management of human bioptic specimens are stressed in order to get to a complete correlative microscopy. We conclude that continuous and simultaneous correlations have to be carried out between SEM and other methods and instruments available for morphological investigation

    Beam Voltage Effects in the Study of Embedded Biological Materials by Secondary Electron Detectors

    Get PDF
    Thin and semithin sections were extensively examined by the secondary electron (SE) detector in a conventional scanning electron microscope (SEM), and in a transmission electron microscope with a scanning attachment (STEM). Various para-meters, in particular the beam voltage, were shown to affect the final SE image (SEI). As for SEM observation, a surface contrast was imaged at low primary electron (PE) voltages (0.6-2 kV), whereas a subsurface contrast predominated at higher energies (15-30 kV). In STEM, significant differences were not detected by varying the PE in the 20-100 kV range. Surface and subsurface in-formation was simultaneously imaged even though the SEI were better resolved at the highest energy

    Phenotypically Heterogeneous Podoplanin-expressing Cell Populations Are Associated with the Lymphatic Vessel Growth and Fibrogenic Responses in the Acutely and Chronically Infarcted Myocardium

    Get PDF
    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRalpha, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRbeta or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development

    Phenotypically Heterogeneous Podoplanin-expressing Cell Populations Are Associated with the Lymphatic Vessel Growth and Fibrogenic Responses in the Acutely and Chronically Infarcted Myocardium

    Get PDF
    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRalpha, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRbeta or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development

    Endothelialization of a New Dacron Graft in an Experimental Model: Light Microscopy, Electron Microscopy and Immunocytochemistry

    Get PDF
    Two types of synthetic vascular grafts, Dacron Triaxial and Dacron Gelseal Triaxial, were implanted into both the common carotids of sheep. The animals were sacrificed 1, 2, 8, and 16 weeks after surgery. Multiple specimens, obtained from grafts and anastomoses, were studied by light microscopy, transmission and scanning electron microscopy. A parallel immunocytochemical analysis was performed on some specimens. Dacron Triaxial grafts failed to develop a complete neointimal coverage. Myofibroblasts and fibroblasts were the dominant cells in such synthetic graft. Moreover, focal areas of stripping, platelet deposition, and thrombosis were observed at 8 and 16 weeks. In contrast, a stable endothelial coverage developed on the Gelseal Triaxial grafts after 16 weeks

    A New Approach for Studying Semithin Sections of Human Pathological Material: Intermicroscopic Correlation Between Light Microscopy and Scanning Electron Microscopy

    Get PDF
    In order to obtain useful and complete information on the study of pathological material, we observed by scanning electron microscopy (SEM) the same semithin sections observed by light microscopy (LM). For this purpose, the specimen must have, at the same time, chromatic and electron dense characteristics. We thus developed different specimen preparation methods, subjecting the semithin sections to specific polychromatic staining with high atomic number (Z) elements, to monochromatic staining followed by routine contrasting with uranyl acetate and lead citrate, and to specific cytochemical and immunocytochemical procedures. The specimens were examined in sequence by LM, by SEM equipped with secondary electron, backscattered electron, transmitted electron detectors and by scanning transmission electron microscopy (S(T)EM)

    Healing of Prosthetic Arterial Grafts

    Get PDF
    Numerous synthetic biomaterials have been developed as vascular substitutes. In vitro, ex vivo and in vivo studies have demonstrated that in animals, selected materials, i.e., Dacron and ePTFE (expanded polytetrafluoroethylene) grafts, are successfully incorporated in both the large and the small caliber host arteries through a process which is generally referred to as graft healing. Morphologically, this process consists of a series of complex events including fibrin deposition and degradation, monocyte-macrophage recruitment and flow-oriented cell-layer generation, this last event being the complete endothelialization of the arterial substitute. In contrast to experimental animals, the flow surface of synthetic vascular grafts remains unhealed in humans, particularly in the small caliber conduits. Healing in man consists of graft incorporation by the perigraft fibrous tissue response with a surface covered by more or less compacted, cross-linked fibrin. It is therefore obvious that: i) marked differences in graft healing exist between animals and man; and ii) the usual mechanisms of graft endothelialization are partially ineffective in man. In order to guarantee the patency of synthetic vascular grafts for human small artery bypass, new strategies and approaches have recently been attempted. In particular, the endothelial cell seeding approach has been successfully accomplished in animals and is being experimented in human clinical studies. The problems and results of this biological approach are outlined in this paper

    Aspects of Cooling at the TRIμ\muP Facility

    Full text link
    The Triμ\muP facility at KVI is dedicated to provide short lived radioactive isotopes at low kinetic energies to users. It comprised different cooling schemes for a variety of energy ranges, from GeV down to the neV scale. The isotopes are produced using beam of the AGOR cyclotron at KVI. They are separated from the primary beam by a magnetic separator. A crucial part of such a facility is the ability to stop and extract isotopes into a low energy beamline which guides them to the experiment. In particular we are investigating stopping in matter and buffer gases. After the extraction the isotopes can be stored in neutral atoms or ion traps for experiments. Our research includes precision studies of nuclear β\beta-decay through β\beta-ν\nu momentum correlations as well as searches for permanent electric dipole moments in heavy atomic systems like radium. Such experiments offer a large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3 figure
    corecore