4 research outputs found

    Pathogenic variants in SOX11 mimicking Pitt-Hopkins syndrome phenotype

    Get PDF
    Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder characterised by severe intellectual disability (ID), distinctive facial features and autonomic nervous system dysfunction, caused by TCF4 haploinsufficiency. We clinically diagnosed with PTHS a 14 (6/12)-year-old female, who had a normal status of TCF4. The pathogenic c.667del (p.Asp223MetfsTer45) variant in SOX11 was identified through whole exome sequencing (WES). SOX11 variants were initially reported to cause Coffin-Siris syndrome (CSS), characterised by growth restriction, moderate ID, coarse face, hypertrichosis and hypoplastic nails. However, recent studies have provided evidence that they give rise to a distinct neurodevelopmental disorder. To date, SOX11 variants are associated with a variable phenotype, which has been described to resemble CSS in some cases, but never PTHS. By reviewing both clinically and genetically 32 out of 82 subjects reported in the literature with SOX11 variants, for whom detailed information are provided, we found that 7/32 (22%) had a clinical presentation overlapping PTHS. Furthermore, we made a confirmation that overall SOX11 abnormalities feature a distinctive disorder characterised by severe ID, high incidence of microcephaly and low frequency of congenital malformations. Purpose of the present report is to enhance the role of clinical genetics in assessing the individual diagnosis after WES results

    Pathogenic variants in SOX11 mimicking Pitt-Hopkins syndrome phenotype

    No full text
    : Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder characterised by severe intellectual disability (ID), distinctive facial features and autonomic nervous system dysfunction, caused by TCF4 haploinsufficiency. We clinically diagnosed with PTHS a 14 6/12 -year-old female, who had a normal status of TCF4. The pathogenic c.667del (p.Asp223MetfsTer45) variant in SOX11 was identified through whole exome sequencing (WES). SOX11 variants were initially reported to cause Coffin-Siris syndrome (CSS), characterised by growth restriction, moderate ID, coarse face, hypertrichosis and hypoplastic nails. However, recent studies have provided evidence that they give rise to a distinct neurodevelopmental disorder. To date, SOX11 variants are associated with a variable phenotype, which has been described to resemble CSS in some cases, but never PTHS. By reviewing both clinically and genetically 32 out of 82 subjects reported in the literature with SOX11 variants, for whom detailed information are provided, we found that 7/32 (22%) had a clinical presentation overlapping PTHS. Furthermore, we made a confirmation that overall SOX11 abnormalities feature a distinctive disorder characterised by severe ID, high incidence of microcephaly and low frequency of congenital malformations. Purpose of the present report is to enhance the role of clinical genetics in assessing the individual diagnosis after WES results

    Linear Diagnostic Procedure Elicited by Clinical Genetics and Validated by mRNA Analysis in Neuronal Ceroid Lipofuscinosis 7 Associated with a Novel Non-Canonical Splice Site Variant in <i>MFSD8</i>

    No full text
    Neuronal ceroid lipofuscinoses (CNL) are lysosomal storage diseases that represent the most common cause of dementia in children. To date, 13 autosomal recessive (AR) and 1 autosomal dominant (AD) gene have been characterized. Biallelic variants in MFSD8 cause CLN7 type, with nearly 50 pathogenic variants, mainly truncating and missense, reported so far. Splice site variants require functional validation. We detected a novel homozygous non-canonical splice-site variant in MFSD8 in a 5-year-old girl who presented with progressive neurocognitive impairment and microcephaly. The diagnostic procedure was elicited by clinical genetics first, and then confirmed by cDNA sequencing and brain imaging. Inferred by the common geographic origin of the parents, an autosomal recessive inheritance was hypothesized, and SNP-array was performed as the first-line genetic test. Only three AR genes lying within the observed 24 Mb regions of homozygosity were consistent with the clinical phenotype, including EXOSC9, SPATA5 and MFSD8. The cerebral and cerebellar atrophy detected in the meantime by MRI, along with the suspicion of accumulation of ceroid lipopigment in neurons, prompted us to perform targeted MFSD8 sequencing. Following the detection of a splice site variant of uncertain significance, skipping of exon 8 was demonstrated by cDNA sequencing, and the variant was redefined as pathogenic

    Clinical Reasoning: A Young Man With Subacute Onset of Spastic Paraparesis

    No full text
    : Leukodystrophies are a group of rare neurodegenerative disorders, usually presenting in infancy with a variable combination of cognitive, motor, and coordination impairment. Adult-onset cases are even more rare, often representing a diagnostic challenge even for experienced neurologists. Here, we present a case of a 44-year-old man with subacute and rapidly progressive spastic paraplegia, whose brain MRI revealed white matter abnormalities compatible with a diagnosis of leukodystrophy. We discuss how to apply a simplified diagnostic algorithm to distinguish acquired leukoencephalopathies from leukodystrophies and how to delve into the maze of genetic testing for white matter diseases. In our patient, we reached the diagnosis of a treatable disorder, whose early recognition is essential to prevent severe neurologic deterioration
    corecore