105 research outputs found

    Dry fractionation as a promising technology to reuse the physically defected legume-based gluten-free pasta

    Get PDF
    Dry fractionation was applied to the legume-based pasta (yellow lentils:whole rice 90:10 w:w) discarded for physical defects. After the air classification, the fine fraction showed a 33% increment of the protein content compared to the raw material, with a 21% yield. The scanning electron micrographs revealed the presence of protein–starch complexes and broken starch granules which led to a low protein separation efficiency. The fine fraction showed interesting nutritional features due to the high concentration of the essential micronutrients Zn (43.3 mg kg−1) and Fe (72.6 mg kg−1). However, also the alpha-galactosides were enriched into the same fraction. The two fractions, fine and coarse, were both characterised by elevated water absorption capacity, with significantly higher values in the fine one. Finally, the gelling capacity varied among the fractions, being influenced by the protein content. Overall, these ingredients could be used to fortify the protein and the essential mineral contents of bakery products, sauces, and creams

    Nutritional Features and Bread-Making Performance of Wholewheat: Does the Milling System Matter?

    Get PDF
    Despite the interest in stone-milling, there is no information on the potential advantages of using the resultant wholegrain flour (WF) in bread-making. Consequently, nutritional and technological properties of WFs obtained by both stone- (SWF) and roller-milling (RWF) were assessed on four wheat samples, differing in grain hardness and pigment richness. Regardless of the type of wheat, stone-milling led to WFs with a high number of particles ranging in size from 315 to 710 \u3bcm), whereas RWFs showed a bimodal distribution with large (>1000 \u3bcm) and fine (<250 \u3bcm) particles. On average, the milling system did not affect the proximate composition and the bioactive features of WFs. The gluten aggregation kinetics resulted in similar trends for all SWFs, with indices higher than for RWFs. The effect of milling on dough properties (i.e., mixing and leavening) was sample dependent. Overall, SWFs produced more gas, resulting in bread with higher specific volume. Bread crumb from SWF had higher lutein content in the wheat cv rich in xanthophylls, while bread from RWF of the blue-grained cv had a moderate but significantly higher content in esterified phenolic acids and total anthocyanins. In conclusion, there was no relevant advantage in using stone- as opposed to roller-milling (and vice versa)

    Serum antioxidant capacity and peroxide level of seven healthy subjects after consumption of different foods

    Get PDF
    This article reports experimental data related to the research article entitled \u201cDifferent effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel Antioxidant/Oxidant Balance approach\u201d (M.N. Laus, M. Soccio, M. Alfarano, A. Pasqualone, M.S. Lenucci, G. Di Miceli, D. Pastore, 2016) [1]. Antioxidant status of blood serum of seven healthy subjects was evaluated during four hours after consumption of two functional pastas, supplemented with either bran oleoresin or bran water extract obtained from durum wheat. For comparison, the effect of a non-supplemented reference pasta was also evaluated, as well as the effects of glucose, of the wheat grain dietary supplement Lisosan G, and of the reference pasta consumed together with Lisosan G. Serum antioxidant status was evaluated by measuring both the serum antioxidant capacity, using LOX-FL, ORAC and TEAC methods, and the serum oxidant status, assessed as peroxide level

    Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse

    Get PDF
    Coarse (CF) and Fine (FF) fractions were obtained by dry fractionation (air classification) of raw micronized flour (RM) of kabuli chickpea, green pea, yellow and red lentil. Pea showed the highest phytate content in RM and CF. Stachyose was the main oligosaccharide in lentils, exceeding 50 mg g-1, whereas raffinose (39.9 mg g-1) was abundant in chickpea. Antinutritional factors were significantly enriched in FF, whereas decreased in CF. Total reflection X-ray fluorescence identified potassium as the main macronutrient in pulses. Ca was highly variable, ranging from 0.92 to 0.28 g kg-1 in pea and yellow lentil, respectively. A significant shift of minerals was observed in FF, but despite the highest phytate content, phytate:Zn ratio of lentils was lower than RM, indicating that Zn was enriched more than phytates. Yellow lentil and pea FF showed a protein content higher than 55 g 100g-1. Dry fractionation significantly affected the physicochemical properties, indicating different potential use of fractions

    Nutritional features and bread-making performance of wholewheat: Does the milling system matter?

    Get PDF
    Despite the interest in stone-milling, there is no information on the potential advantages of using the resultant wholegrain flour (WF) in bread-making. Consequently, nutritional and technological properties of WFs obtained by both stone- (SWF) and roller-milling (RWF) were assessed on four wheat samples, differing in grain hardness and pigment richness. Regardless of the type of wheat, stone-milling led to WFs with a high number of particles ranging in size from 315 to 710 µm), whereas RWFs showed a bimodal distribution with large (>1000 µm) and fine (<250 µm) particles. On average, the milling system did not affect the proximate composition and the bioactive features of WFs. The gluten aggregation kinetics resulted in similar trends for all SWFs, with indices higher than for RWFs. The effect of milling on dough properties (i.e., mixing and leavening) was sample dependent. Overall, SWFs produced more gas, resulting in bread with higher specific volume. Bread crumb from SWF had higher lutein content in the wheat cv rich in xanthophylls, while bread from RWF of the blue-grained cv had a moderate but significantly higher content in esterified phenolic acids and total anthocyanins. In conclusion, there was no relevant advantage in using stone- as opposed to roller-milling (and vice versa)

    Data on the proximate composition, bioactive compounds, physicochemical and functional properties of a collection of faba beans (Vicia faba L.) and lentils (Lens culinaris Medik.)

    Get PDF
    This dataset is referred to a collection of 41 faba bean (Vicia faba L.) and 15 lentil (Lens culinaris Medik.) accessions from the ex situ repository of the Institute of Biosciences and Bioresources of the Italian National Research Council (CNR-IBBR). All the accessions were grown at the experimental farm “P. Martucci” of the University of Bari “Aldo Moro” (41°01′22.1′′ N 16°54′21.0′′ E) during the growing season 2017–2018, according to a randomized block design with two replicates, each constituted by 10 individual plants. The dataset reports raw and elaborated analytical data determined on the flour produced from individual accessions, concerning proximate composition, bioactive compounds, antioxidant activity, fatty acid composition, and physicochemical and functional properties. Elaborated data might be used to understand the compositional variability within the species and, together with raw data, to highlight peculiar accessions characterized by valuable nutritional and/or technological attitude useful in research institutions and food industries. Furthermore, the data can be used for genetic studies aimed at identifying genomic regions underlying nutritional and technological traits

    In vitro and in vivo nutraceutical characterization of two chickpea accessions: Differential effects on hepatic lipid over-accumulation

    Get PDF
    Dietary habits are crucially important to prevent the development of lifestyle-associated diseases. Diets supplemented with chickpeas have numerous benefits and are known to improve body fat composition. The present study was undertaken to characterize two genetically and phenotypically distinct accessions, MG_13 and PI358934, selected from a global chickpea collection. Rat hepatoma FaO cells treated with a mixture of free fatty acids (FFAs) (O/P) were used as an in vitro model of hepatic steatosis. In parallel, a high-fat diet (HFD) animal model was also established. In vitro and in vivo studies revealed that both chickpea accessions showed a significant antioxidant ability. However, only MG_13 reduced the lipid over-accumulation in steatotic FaO cells and in the liver of HFD fed mice. Moreover, mice fed with HFD + MG_13 displayed a lower level of glycemia and aspartate aminotransferase (AST) than HFD mice. Interestingly, exposure to MG_13 prevented the phosphorylation of the inflammatory nuclear factor kappa beta (NF-kB) which is upregulated during HFD and known to be linked to obesity. To conclude, the comparison of the two distinct chickpea accessions revealed a beneficial effect only for the MG_13. These findings highlight the importance of studies addressing the functional characterization of chickpea biodiversity and nutraceutical properties

    Development of local strontium ranelate delivery systems and long term in vitro drug release studies in osteogenic medium

    Get PDF
    Funding Information: The authors acknowledge financial support from the Latvian Academy of Sciences though the ERANet under the frame of EuroNanoMed-II (Nanoforosteo, Project number: Z/14/1187) and the Riga Technical University and Riga Stardiņš University Cooperation Research Project No. RTU/RSU-18. Publisher Copyright: © 2018, The Author(s).It has been recognized that the operative stabilization of osteoporotic fractures should be followed up with an appropriate osteoporosis treatment in order to decrease the risk of repeated fractures. Despite the good clinical results of strontium ranelate (SrRan) towards the osteoporosis treatment, high drug doses and long treatment period cause an increased risk of serious side effects. Novel local SrRan/poly(lactic acid) (SrRan/PLA) delivery systems containing from 3.57 ± 0.28 wt% to 24.39 ± 0.91 wt% of active substance were developed. In order to resemble the naturally occurring processes, osteogenic media (OM) was used as a release medium for long term (121 days) in vitro drug release studies and UV/VIS method for the determination of SrRan content in OM was developed and validated. Biomimetic calcium phosphate precipitates were found on the surface and in the pores of prepared delivery system after microcapsule exposure to OM for 121 days as well as SrRan particles, indicating that the release of the drug have not been completed within 121 days. In vitro cell viability evaluation approved no cytotoxic effects of microcapsule suspensions and extracts.publishersversionPeer reviewe
    corecore