471 research outputs found

    Hierarchically designed hybrid nanoparticles for combinational photochemotherapy against a pancreatic cancer cell line

    Get PDF
    © The Royal Society of Chemistry 2018. Here, we report the formulation of hybrid nanoparticles consisting of aggregated gold nanoparticles (GNPs) impregnated into a gemcitabine-polymer conjugate matrix that exhibit synergistic photo-chemo-therapeutic activity against pancreatic cancer. Well-defined, sub-100 nm hybrid NPs were successfully formulated and their photothermal conversion efficiency was evaluated, which was found to be as high as 63% in the red-visible spectrum. By varying the GNP and GEM-polymer feed, it was possible to control the red-shifting of the surface plasmon resonance at therapeutically relevant wavelengths. The hybrid NPs exhibited significant cytotoxicity against MiaPaCa-2 cells with a half-maximal inhibitory concentration (IC 50 ) of 0.0012 mg mL -1 ; however the IC 50 decreased by a factor of 2 after the cells were irradiated with a continuous wave red laser for 1 min (1.4 W cm -2 ). Although the irradiation of the aggregated GNPs loaded in the hybrid NPs produced a higher thermal effect for the same amount of non-loaded GNPs, the IC 50 of the hybrid NPs was significantly lower than that of the free GNPs, hence indicating a synergistic effect of the polymer bound GEM and the GNPs

    Macromolecular cell surface engineering for accelerated and reversible cellular aggregation.

    Get PDF
    We report the synthesis of two simple copolymers that induce rapid cell aggregation within minutes in a fully reversible manner. The polymers can act as self-supporting "cellular glues" or as "drivers" of 3D cell spheroids/aggregates formation at minute concentrations

    Polymer coated gold nanoshells for combinational photochemotherapy of pancreatic cancer with gemcitabine

    Get PDF
    Pancreatic cancer is one of the most lethal malignancies with limited therapeutic options and dismal prognosis. Gemcitabine is the front-line drug against pancreatic cancer however with limited improvement of therapeutic outcomes. In this study we envisaged the integration of GEM with gold nanoshells which constitute an interesting class of nanomaterials with excellent photothermal conversion properties. Nanoshells were coated with thiol-capped poly(ethylene glycol) methacrylate polymers of different molecular weight via Au–S attachment. It was found that the molecular weight of the polymers affects the in vitro performance of the formulations; more importantly we demonstrate that the EC50 of nanoshell loaded GEM can be suppressed but fully restored and even improved upon laser irradiation. Our proposed nanoformulations outperformed the cytotoxicity of the parent drug and showed confined synergism under the tested in vitro conditions

    Electrosprayed Janus Particles for Combined Photo-Chemotherapy

    Get PDF
    This work is a proof of concept study establishing the potential of electrosprayed Janus particles for combined photodynamic therapy-chemotherapy. Sub-micron-sized particles of polyvinylpyrrolidone containing either an anti-cancer drug (carmofur) or a photosensitiser (rose bengal; RB), and Janus particles containing both in separate compartments were prepared. The functional components were present in the amorphous form in all the particles, and infrared spectroscopy indicated that intermolecular interactions formed between the different species. In vitro drug release studies showed that both carmofur and RB were released at approximately the same rate, with dissolution complete after around 250 min. Cytotoxicity studies were undertaken on model human dermal fibroblasts (HDF) and lung cancer (A549) cells, and the influence of light on cell death explored. Formulations containing carmofur as the sole active ingredient were highly toxic to both cell lines, with or without a light treatment. The RB formulations were non-toxic to HDF when no light was applied, and with photo-treatment caused large amounts of cell death for both A549 and HDF cells. The Janus formulation containing both RB and carmofur was non-toxic to HDF without light, and only slightly toxic with the photo-treatment. In contrast, it was hugely toxic to A549 cells when light was applied. The Janus particles are thus highly selective for cancer cells, and it is hence proposed that such electrosprayed particles containing both a chemotherapeutic agent and photosensitiser have great potential in combined chemotherapy/photodynamic therapy

    Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response

    Get PDF
    To investigate the role of TNF alpha in the development of in vivo immune response we have generated TNF alpha-deficient mice by gene targeting. Homozygous mutant mice are viable and fertile, develop lymph nodes and Peyer's patches and show no apparent phenotypic abnormalities, indicating that TNF alpha is not required for normal mouse development. In the absence of TNF alpha mice readily succumb to L. monocytogenes infections and show reduced contact hypersensitivity responses. Furthermore, TNF alpha knockout mice are resistant to the systemic toxicity of LPS upon D-galactosamine sensitization, yet they remain sensitive to high doses of LPS alone. Most interestingly, TNF alpha knockout mice completely lack splenic primary B cell follicles and cannot form organized follicular dendritic cell (FDC) networks and germinal centers. However, despite the absence of B cell follicles, Ig class-switching can still occur, yet deregulated humoral immune responses against either thymus-dependent (TD) or thymus-independent (TI) antigens are observed. Complementation of TNF alpha functioning by the expression of either human or murine TNF alpha transgenes is sufficient to reconstitute these defects, establishing a physiological role for TNF alpha in regulating the development and organization of splenic follicular architecture and in the maturation of the humoral immune response

    Dual controlled delivery of squalenoyl-gemcitabine and paclitaxel using thermo-responsive polymeric micelles for pancreatic cancer

    Get PDF
    In this study we report the synthesis of a themroresponsive block copolymer by reversible addition fragmentation transfer polymerization comprising poly(2-ethylhexyl methacrylate)-b-poly[di(ethylene glycol)methyl ether methacrylate-co-oligo(ethylene glycol)methyl ether methacrylate] as hydrophobic and thermoresponsive blocks respectively. The polymer self-assembles into sub-50 micelles and can carry simultaneously two drug molecules, namely squalene-gemcitabine and paclitaxel. Both drugs can be released from the micellar compartment in a thermally controlled manner owing to the controllable disruption of the micellar corona above the lower critical solution temperature of the polymer. We demonstrate that the formulation augments synergistically the cytotoxicity of the two drugs in vitro against a model pancreatic cancer cell line. More importantly, it is shown that the polymer exerts a direct interaction with the cell membrane which further augments the cytotoxicity of the drug cargo in a thermally controlled manne

    Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy.

    Get PDF
    Light-controlled drug delivery systems constitute an appealing means to direct and confine drug release spatiotemporally at the site of interest with high specificity. However, the utilization of light-activatable systems is hampered by the lack of suitable drug carriers that respond sharply to visible light stimuli at clinically relevant wavelengths. Here, a new class of self-assembling, photo- and pH-degradable polymers of the polyacetal family is reported, which is combined with photochemical internalization to control the intracellular trafficking and release of anticancer compounds. The polymers are synthesized by simple and scalable chemistries and exhibit remarkably low photolysis rates at tunable wavelengths over a large range of the spectrum up to the visible and near infrared regime. The combinational pH and light mediated degradation facilitates increased therapeutic potency and specificity against model cancer cell lines in vitro. Increased cell death is achieved by the synergistic activity of nanoparticle-loaded anticancer compounds and reactive oxygen species accumulation in the cytosol by simultaneous activation of porphyrin molecules and particle photolysis

    Solid lipid nanoparticles self-assembled from spray dried microparticles

    Get PDF
    We report the self-assembly of anti-cancer drug-loaded solid lipid nanoparticles (SLNs) from spray dried microparticles comprising poly(vinylpyrrolidone) (PVP) loaded with glyceryl tristearate (GTS) and either indomethacin (IMC) or 5-fluorouracil (5-FU). When the spray dried microparticles are added to water, the PVP matrix dissolves and the GTS and drug self-assemble into SLNs. The SLNs provide a non-toxic delivery platform for both hydrophobic (indomethacin) and hydrophilic (5-fluorouracil) drugs. They show extended release profiles over more than 24 h, and in permeation studies the drug cargo is seen to accumulate inside cancer cells. This overcomes major issues with achieving local intestinal delivery of these active ingredients, in that IMC permeates well and thus will enter the systemic circulation and potentially lead to side effects, while 5-FU remains in the lumen of the small intestine and will be secreted without having any therapeutic benefit. The SLN formulations are as effective as the pure drugs in terms of their ability to induce cell death. Our approach represents a new and simple route to the fabrication of SLNs: by assembling these from spray-dried microparticles on demand, we can circumvent the low storage stability which plagues SLN formulations

    Comparison of Thermoresponsive Hydrogels Synthesized by Conventional Free Radical and RAFT Polymerization

    Get PDF
    We compared the influence of the polymerization mechanism onto the physical characteristics of thermoresponsive hydrogels. The Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels were successfully synthesized using reversible addition-fragmentation chain-transfer (RAFT) and free radical polymerization (FRP). The gels were prepared while using different crosslinker feed and monomer concentration. The swelling, dye release, and hydrolytic stability of the gels were investigated in water, or in representative komostrope and chaotrope salt solutions at room temperature and at 37 â—¦C. It was found that the swelling ratio (SR) of the RAFT gels was significantly higher than that of the FRP gels; however, an increased crosslinking density resulted in a decrease of the SR of the RAFT gels as compared to the corresponding gels that are made by FRP, which indicates the limitation of the cross-linking efficiency that is attained in RAFT polymerization. Additionally, an increased monomer concentration decreased the SR of the RAFT gels, whereas a similar SR was observed for the FRP gels. However, the SR of both RAFT and FRP gels in NaSCN and Na2SO4 solutions were similar. Finally, the rate of dye release was significantly slower from the RAFT gels than the FRP gels and the hydrolytic stability of the RAFT gels was lower than that of FRP gels in water, but maintained similar stability in Na2SO4 and NaSCN solutions
    • …
    corecore