140 research outputs found

    Antibiotic production in the Gymnoascaceae with reference to the nitrogen source

    Get PDF
    Typescript, etc

    Biological and Biologically Inspired Polymers for Interface Modification

    Get PDF
    Naturally occurring macromolecules are produced for a specific function and have the selectivity to accomplish objectives with little waste in energy. The scientific community strives to develop smart, efficient molecules on an economical scale, thus lessons can be learned from nature and applied to cost effective synthetic systems. First, the mimicry of naturally occurring antimicrobial peptides (AMPs) will be described. AMPs show great potential as alternatives to conventional antibiotics as they can selectively bind and eliminate pathogenic bacteria without harming eukaryotic tissues. Aqueous reversible addition–fragmentation chain transfer (RAFT) polymerization was utilized to prepare primary and tertiary amine containing AMP polymer mimics with precise polymerization control. The detailed synthetic strategy along with an outline of in vitro cell studies will be discussed in order to elucidate the effect of polymer composition on antimicrobial activity and selectivity. The second section of this work will discuss a highly surface active protein from filamentous fungi called hydrophobin. Hydrophobins are small proteins that spontaneously self-assemble into polymeric films at interfaces. They are amphipathic in nature and form tightly bound membranes that shift the polarity of interfaces at which they assemble. This research focuses on elucidating the mechanisms and driving forces for assembly of the ABH1 hydrophobin protein from the edible white button mushroom Agaricus bisporus

    Specific Soluble Oligomers of Amyloid-β Peptide Undergo Replication and Form Non-Fibrillar Aggregates in Interfacial Environments

    Get PDF
    Aggregates of amyloid-β (Aβ) peptides have been implicated in the etiology of Alzheimer disease. Among the different forms of Aβ aggregates, low molecular weight species ranging between ∼2- and 50-mers, also called “soluble oligomers,” have emerged as the species responsible for early synaptic dysfunction and neuronal loss. Emerging evidence suggests that the neurotoxic oligomers need not be formed along the obligatory nucleation-dependant fibril formation pathway. In our earlier work, we reported the isolation of one such “off-pathway” 12–18-mer species of Aβ42 generated from fatty acids called large fatty acid-derived oligomers (LFAOs) (Kumar, A., Bullard, R. L., Patel, P., Paslay, L. C., Singh, D., Bienkiewicz, E. A., Morgan, S. E., and Rangachari, V. (2011) PLoS One 6, e18759). Here, we report the physiochemical aspects of LFAO-monomer interactions as well as LFAO-LFAO associations in the presence of interfaces. We discovered that LFAOs are a replicating strain of oligomers that recruit Aβ42 monomers and quantitatively convert them into LFAO assemblies at the expense of fibrils, a mechanism similar to prion propagation. We also found that in the presence of hexane-buffer or chloroform-buffer interfaces LFAOs are able to associate with themselves to form larger but non-fibrillar aggregates. These results further support the hypothesis that low molecular weight oligomers can be generated via non-fibril formation pathways. Furthermore, the unique replicating property of off-pathway oligomers may hold profound significance for Alzheimer disease pathology

    Non-Esterified Fatty Acids Generate Distinct Low-Molecular Weight Amyloid-β (Aβ42) Oligomers along Pathway Different from Fibril Formation

    Get PDF
    Amyloid-beta (A beta) peptide aggregation is known to play a central role in the etiology of Alzheimer\u27s disease (AD). Among various aggregates, low-molecular weight soluble oligomers of A beta are increasingly believed to be the primary neurotoxic agents responsible for memory impairment. Anionic interfaces are known to influence the A beta aggregation process significantly. Here, we report the effects of interfaces formed by medium-chain (C9-C12), saturated non-esterified fatty acids (NEFAs) on A beta 42 aggregation. NEFAs uniquely affected A beta 42 aggregation rates that depended on both the ratio of A beta:NEFA as well the critical micelle concentration (CMC) of the NEFAs. More importantly, irrespective of the kind of NEFA used, we observed that two distinct oligomers, 12-18 mers and 4-5 mers were formed via different pathway of aggregation under specific experimental conditions: (i) 12-18 mers were generated near the CMC in which NEFAs augment the rate of A beta 42 aggregation towards fibril formation, and, (ii) 4-5 mers were formed above the CMC, where NEFAs inhibit fibril formation. The data indicated that both 12-18 mers and 4-5 mers are formed along an alternate pathway called \u27off-pathway\u27 that did not result in fibril formation and yet have subtle structural and morphological differences that distinguish their bulk molecular behavior. These observations, (i) reflect the possible mechanism of A beta aggregation in physiological lipid-rich environments, and (ii) reiterate the fact that all oligomeric forms of A beta need not be obligatory intermediates of the fibril formation pathway

    Contracts

    Get PDF

    Calendering of an elastic-viscous material

    No full text
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1955.Vita.Includes bibliographical references (leaf 30en Edits Sent).by Paul R. Paslay.Sc.D
    corecore