260 research outputs found

    Effect of 1 or 2-layer application of an all-in-one adhesive on bond strength and ultrastructure

    Get PDF
    Abstract no. 540published_or_final_versio

    Nanoleakage in single-step adhesives: what are we really testing?

    Get PDF
    Abstract no. 898published_or_final_versio

    Solvent and water retention in dental adhesive films after evaporation

    Get PDF
    published_or_final_versio

    Solvent and water retention in dental adhesive blends after evaporation

    Get PDF
    This study examined the extent of organic solvent and water retention in comonomer blends with different hydrophilicity (Hoy's solubility parameter for hydrogen bonding, δh) after solvent evaporation, and the extent of tracer penetration in polymerised films prepared from these resins. For each comonomer blend, adhesive/solvent mixtures were prepared by addition of (1) 50 wt% acetone, (2) 50 wt% ethanol, (3) 30 wt% acetone and 20 wt% water and (4) 30 wt% ethanol and 20 wt% water. The mixtures were placed in glass wells and evaporated for 30-60 s for acetone-based resins, and 60-120 s for ethanol-based resins. The weight of the comonomer mixtures was measured before and after solvent evaporation. Resin films were prepared for transmission electron microscopy (TEM) after immersion in ammonical silver nitrate. The percentages of solvent and water retained in the comonomer mixtures, and between the acetone and ethanol groups were measured gravimetrically and were statistically compared. In comonomer-organic solvent mixtures, the percentage of solvent retained in acetone and ethanol-based mixtures increased significantly with hydrophilicity of the comonomer blends (P<0.05). In resin-organic solvent-water mixtures, significantly more solvent and water were retained in the ethanol-based mixtures (P<0.0001), when compared to acetone-based mixtures after 60 s of air-drying. TEM revealed residual water being trapped as droplets in resin films containing acetone and water. Water-filled channels were seen along the film periphery of all groups and throughout the entire resin films containing ethanol and water. The addition of water to comonomer-ethanol mixtures results in increased retention of both ethanol and water because both solvents can hydrogen bond to the monomers. © 2005 Elsevier Ltd. All rights reserved.postprin

    Submicron hiati in acid-etched dentin are iatrogenic artifacts

    Get PDF
    Abstract no. 1703published_or_final_versio

    Effect of hydrophilicity on water-vapor permeability of dental adhesive films

    Get PDF
    published_or_final_versio

    Centrifugal melt spinning of polyvinylpyrrolidone (PVP)/triacontene copolymer fibres

    Get PDF
    Polyvinylpyrrolidone/1-triacontene (PVP/TA) copolymer fibre webs produced by centrifugal melt spinning were studied to determine the influence of jet rotation speed on morphology and internal structure as well as their potential utility as adsorbent capture media for disperse dye effluents. Fibres were produced at 72 C with jet head rotation speeds from 7000 to 15,000 r min-1. The fibres were characterised by means of SEM, XRD and DSC. Adsorption behaviour was investigated by means of an isothermal bottle point adsorption study using a commercial disperse dye, Dianix AC-E. Through centrifugal spinning nanofibers and microfibers could be produced with individual fibres as fine as 200–300 nm and mean fibre diameters of ca. 1–2 lm. The PVP/TA fibres were mechanically brittle with characteristic brittle tensile fracture regions observed at the fibre ends. DSC and XRD analyses suggested that this brittleness was linked to the graft chain crystallisation where the PVP/TA was in the form of a radial brush copolymer. In this structure, the triacontene branches interlock and form small lateral crystals around an amorphous backbone. As an adsorbent, the PVP/TA fibres were found to adsorb 35.4 mg g-1 compared to a benchmark figure of 30.0 mg g-1 for a granular-activated carbon adsorbent under the same application conditions. PVP/TA is highly hydrophobic and adsorbs disperse dyes through the strong ‘‘hydrophobic bonding’’ interaction. Such fibrous assemblies may have applications in the targeted adsorption and separation of non-polar species from aqueous or polar environments
    • …
    corecore