CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Solvent and water retention in dental adhesive blends after evaporation
Authors
RM Carvalho
M Ferrari
+7 more
C Goracci
N Hiraishi
NM King
DH Pashley
EL Pashley
FR Tay
CKY Yiu
Publication date
1 January 2005
Publisher
'Elsevier BV'
Doi
Abstract
This study examined the extent of organic solvent and water retention in comonomer blends with different hydrophilicity (Hoy's solubility parameter for hydrogen bonding, δh) after solvent evaporation, and the extent of tracer penetration in polymerised films prepared from these resins. For each comonomer blend, adhesive/solvent mixtures were prepared by addition of (1) 50 wt% acetone, (2) 50 wt% ethanol, (3) 30 wt% acetone and 20 wt% water and (4) 30 wt% ethanol and 20 wt% water. The mixtures were placed in glass wells and evaporated for 30-60 s for acetone-based resins, and 60-120 s for ethanol-based resins. The weight of the comonomer mixtures was measured before and after solvent evaporation. Resin films were prepared for transmission electron microscopy (TEM) after immersion in ammonical silver nitrate. The percentages of solvent and water retained in the comonomer mixtures, and between the acetone and ethanol groups were measured gravimetrically and were statistically compared. In comonomer-organic solvent mixtures, the percentage of solvent retained in acetone and ethanol-based mixtures increased significantly with hydrophilicity of the comonomer blends (P<0.05). In resin-organic solvent-water mixtures, significantly more solvent and water were retained in the ethanol-based mixtures (P<0.0001), when compared to acetone-based mixtures after 60 s of air-drying. TEM revealed residual water being trapped as droplets in resin films containing acetone and water. Water-filled channels were seen along the film periphery of all groups and throughout the entire resin films containing ethanol and water. The addition of water to comonomer-ethanol mixtures results in increased retention of both ethanol and water because both solvents can hydrogen bond to the monomers. © 2005 Elsevier Ltd. All rights reserved.postprin
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/48485
Last time updated on 01/06/2016