76 research outputs found
Stationary rotation of the unbalanced rotor with the liquid autobalancing device under action of external friction forces
Influence of external friction forces on rotation of the rotor with the liquid autobalancing device is considered. The liquid in the balancing chamber at stationary movement rotates together with the rotor as solids. Analytical expressions for deflection of the shaft, unbalance of the system and the necessary rotating moment from the engine providing rotation with set speed are received
Stationary rotation stability of unbalanced rotor with autobalancing device with liquid on flexible shaft
The condition of rotor rotation stability with liquid autobalancing device consisting of chamber, float and incompressible homogeneous liquid filling the space between them has been obtained. The restoring force and forces of internal and external friction take effect on the rotor. The latter depend linearly respectively on strain rate and absolute velocity of rotor connection point to the shaf
Investigation of Input Signal Curve Effect on Formed Pulse of Hydraulic-Powered Pulse Machine
Well drilling machines should have as high efficiency factor as it is possible. This work proposes factors that are affected by change of input signal pulse curve. A series of runs are conducted on mathematical model of hydraulic-powered pulse machine. From this experiment, interrelations between input pulse curve and construction parameters are found. Results of conducted experiment are obtained with the help of the mathematical model, which is created in Simulink Matlab
Optimization of hole generation in Ti/CFRP stacks
The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-K1 Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed
ΠΠ΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΡΡ ΠΌΠΈΠ ΠΠ Π½Π° Π²ΡΡΠ°Π±ΠΎΡΠΊΡ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² in vitro
Objectives. To evaluate the dynamics of the expression level of IL-1Ξ² and IL-28Ξ² (IFN-Ξ»3) genes as a result of complex knockdown of some cellular genes, whose expression products play an important role in the reproduction of the influenza virus.Methods. Following the collection of virus-containing liquid and cell lysate within three days from the moment of transfection and infection, the intensity of viral reproduction was assessed using the cytopathic effect titration method. The concentration of viral ribonucleic acid (vRNA) and change in the expression of IL-1Ξ² and IL-28Ξ² (IFN-Ξ»3) were determined by real-time reverse transcription quantitative polymerase chain reaction (real-time RT-qPCR). The nonparametric MannβWhitney test was used to statistically calculate significant differences between groups.Results. The use of each small interfering ribonucleic acid (siRNA) complex led to a decrease in viral reproduction on the first day at the multiplicity of infection (MOI) of 0.001. The use of complex A (FLT4.2 + Nup98.1) and D (FLT4.2 + Nup98.1 + Nup205) led to a decrease in viral titer by 2.8 lgTCID50/mL and by 2.1 lgTCID50/mL relative to the use of nonspecific L2 siRNA and viral control (p β€ 0.05). Transfection of complexes B (Nup98.1 + Nup205) and C (FLT4.2 + Nup205) also reduced the viral titer by 1.5 lgTCID50/mL and 1.8 lgTCID50/mL relative to nonspecific L2 siRNA and viral control (p β€ 0.05). When conducting real-time RT-qPCR, a significant decrease in the concentration of viral RNA was also noted. When using complexes B, C, and D, the concentration of vRNA decreased on the first day by 14.5, 4.1, and 15 times, respectively. On the second day, a decrease in vRNA was observed in cells with B and D complexes by 17.1 and 18.3 times (p β€ 0.05). Along with a decrease in the viral titer and vRNA, an increase in the expression of the IL-1Ξ² and IL-28Ξ² genes was observed on the first day when using all siRNA complexes relative to nonspecific and viral controls (p β€ 0.05). On the second day, an increase was also observed in cells with A and D complexes, while on the third day, there was an increase in the expression of these genes in cells with complex D (p β€ 0.05).Conclusions. The use of siRNA complexes is shown to have a pronounced antiviral effect while simultaneously suppressing the activity of cellular genes (FLT4, Nup98 and Nup205). In parallel, the transfection of complexes that block the formation of expression products necessary for viral reproduction is demonstrated to lead to an increase in the level of expression of the IL-1Ξ² and IL-28Ξ² genes. These results indicate not only that the use of siRNA has antiviral activity, but also immunomodulatory activity, which can contribute to a more effective immune response of the body.Π¦Π΅Π»ΠΈ. ΠΡΠ΅Π½ΠΈΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΡΡΠΎΠ²Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² IL-1Ξ² ΠΈ IL-28Ξ² (IFN-Ξ»3) Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ Π½ΠΎΠΊΠ΄Π°ΡΠ½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π³Π΅Π½ΠΎΠ², ΡΡΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΈΠ³ΡΠ°ΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ Π²ΠΈΡΡΡΠ° Π³ΡΠΈΠΏΠΏΠ°.ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠΈΡΡΡΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡΡ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ ΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΉ Π»ΠΈΠ·Π°Ρ ΠΎΡΠ±ΠΈΡΠ°Π»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 3-Ρ
Π΄Π½Π΅ΠΉ Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΠΈ ΠΈ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠΈΡΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΡΠΈΡΠΎΠΏΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠΈΠ±ΠΎΠ½ΡΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (Π²Π ΠΠ) ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ IL-1Ξ² ΠΈ IL-28Ξ² (IFN-Ξ»3) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΊΡΠΈΠΏΡΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ ΡΠ΅ΠΏΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΠΠ’-ΠΠ¦Π -Π Π). ΠΠ»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΡ
ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π½Π΅ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΠΠ°Π½Π½Π°-Π£ΠΈΡΠ½ΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΠΌΠ°Π»ΡΡ
ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΈΡΡΡΡΠΈΡ
Π ΠΠ (ΠΌΠΈΠ ΠΠ) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ Π½Π° 1-Π΅ ΡΡΡΠΊΠΈ ΠΏΡΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΡ 0.001. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² A (FLT4.2 + Nup98.1) ΠΈ D (FLT4.2 + Nup98.1 + Nup205) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ° Π½Π° 2.8 lgΠ’Π¦Π50/ΠΌΠ» ΠΈ Π½Π° 2.1 lgΠ’Π¦Π50/ΠΌΠ» ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΈΠ ΠΠ L2 ΠΈ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ (Ρ β€ 0.05). ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² B (Nup98.1 + Nup205) ΠΈ C (FLT4.2 + Nup205) Π²ΠΈΡΡΡΠ½ΡΠΉ ΡΠΈΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ½ΠΈΠΆΠ°Π»ΡΡ Π½Π° 1.5 lgΠ’Π¦Π50/ΠΌΠ» ΠΈ 1.8 lgΠ’Π¦Π50/ΠΌΠ» ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΈΠ ΠΠ L2 ΠΈ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ (Ρ β€ 0.05). ΠΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΠ’-ΠΠ¦Π -Π Π ΡΠ°ΠΊΠΆΠ΅ Π±ΡΠ»ΠΎ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΠ΅ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π²Π ΠΠ. ΠΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² B, C ΠΈ D ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π²Π ΠΠ ΡΠ½ΠΈΠΆΠ°Π»Π°ΡΡ Π½Π° 1-Π΅ ΡΡΡΠΊΠΈ Π² 14.5, 4.1 ΠΈ 15.0 ΡΠ°Π· ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠ° 2-Π΅ ΡΡΡΠΊΠΈ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°ΠΌΠΈ B ΠΈ D Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π²Π ΠΠ Π² 17.1 ΠΈ 18.3 ΡΠ°Π· (Ρ β€ 0.05). ΠΠ°ΡΡΠ΄Ρ ΡΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ° ΠΈ Π²Π ΠΠ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² IL-1Ξ² ΠΈ IL-28Ξ² Π½Π° 1-Π΅ ΡΡΡΠΊΠΈ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΌΠΈΠ ΠΠ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ (Ρ β€ 0.05). ΠΠ° 2-Π΅ ΡΡΡΠΊΠΈ ΡΠ°ΠΊΠΆΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°ΠΌΠΈ A ΠΈ D, Π° Π½Π° ΡΡΠ΅ΡΡΠΈ β Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΌ D (Ρ β€0.05).ΠΡΠ²ΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΌΠΈΠ ΠΠ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΌΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΌΡ ΡΡΡΠ΅ΠΊΡΡ ΠΏΡΠΈ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π³Π΅Π½ΠΎΠ² (FLT4, Nup98 ΠΈ Nup205). ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Ρ ΡΡΠΈΠΌ Π±ΡΠ»ΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ², Π±Π»ΠΎΠΊΠΈΡΡΡΡΠΈΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΡ
Π΄Π»Ρ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ, ΠΏΠΎΠ²ΡΡΠ°Π΅ΡΡΡ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² IL-1Ξ² ΠΈ IL-28Ξ². ΠΠ°Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ ΠΌΠΈΠ ΠΠ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΉ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠΌΠΎΠ΄ΡΠ»ΠΈΡΡΡΡΠ΅ΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ, ΡΡΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΌΡ ΠΈΠΌΠΌΡΠ½Π½ΠΎΠΌΡ ΠΎΡΠ²Π΅ΡΡ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°
Phylogeny, phylogeography and hybridization of Caucasian barbels of the genus Barbus (Actinopterygii, Cyprinidae)
Phylogenetic relationships and phylogeography of six species of Caucasian barbels, the genus Barbus s. str., were studied based on extended geographic coverage and using mtDNA and nDNA markers. Based on 27 species studied, matrilineal phylogeny of the genus Barbus is composed of two clades ΒΏ (a) West European clade, (b) Central and East European clade. The latter comprises two subclades: (b1) Balkanian subclade, and (b2) Ponto-Caspian one that includes 11 lineages mainly from Black and Caspian Sea drainages. Caucasian barbels are not monophyletic and subdivided for two groups. The Black Sea group encompasses species from tributaries of Black Sea including re-erected B. rionicus and excluding B. kubanicus. The Caspian group includes B. ciscaucasicus, B. cyri (with B. goktschaicus that might be synonymized with B. cyri), B. lacerta from the Tigris-Euphrates basin and B. kubanicus from the Kuban basin. Genetic structure of Black Sea barbels was influenced by glaciation-deglaciation periods accompanying by freshwater phases, periods of migration and colonization of Black Sea tributaries. Intra- and intergeneric hybridization among Caucasian barbines was revealed. In the present study, we report about finding of B. tauricus in the Kuban basin, where only B. kubanicus was thought to inhabit. Hybrids between these species were detected based on both mtDNA and nDNA markers. Remarkably, Kuban population of B. tauricus is distant to closely located conspecific populations and we consider it as relic. We highlight revealing the intergeneric hybridization between evolutionary tetraploid (2n=100) B. goktschaicus and evolutionary hexaploid (2n=150) Capoeta sevangi in Lake Sevan.The study was supported by Russian Science Foundation (grant no. 15-14-10020); final stage of the study was supported by Russian Foundation for Basic Research (grants nos. 18-54-05003 and 19-04-00719)
Limited Cheese Intake Paradigm Replaces Patterns of Behavioral Disorders in Experimental PTSD: Focus on Resveratrol Supplementation
Currently, the efficacy of drug therapy for post-traumatic stress disorder or PTSD leaves much to be desired, making nutraceutical support a promising avenue for treatment. Recent research has identified the protective effects of resveratrol in PTSD. Here, we tested the behavioral and neurobiological effects of combining cheese consumption with resveratrol supplements in an experimental PTSD model. Using the elevated plus maze test, we observed that cheese intake resulted in a shift from anxiety-like behavior to depressive behavior, evident in increased freezing acts. However, no significant changes in the anxiety index value were observed. Interestingly, supplementation with cheese and resveratrol only led to the elimination of freezing behavior in half of the PTSD rats. We further segregated the rats into two groups based on freezing behavior: Freezing+ and Freezing0 phenotypes. Resveratrol ameliorated the abnormalities in Monoamine Oxidize -A and Brain-Derived Neurotrophic Factor gene expression in the hippocampus, but only in the Freezing0 rats. Moreover, a negative correlation was found between the number of freezing acts and the levels of Monoamine Oxidize-A and Brain-Derived Neurotrophic Factor mRNAs in the hippocampus. The study results show promise for resveratrol supplementation in PTSD treatment. Further research is warranted to better understand the underlying mechanisms and optimize the potential benefits of resveratrol supplementation for PTSD. Β© 2023 by the authors.23-15-20040; Russian Science Foundation, RSFThis work was supported by the Russian Scientific Foundation, Regional grant, Chelyabinsk Region (#23-15-20040)
ΠΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Π½ΠΎΠ·Π° ΡΡΠ°Ρ Π΅ΠΈ Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Π±ΡΠΎΠ½Ρ ΠΎΡΠΊΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ Ρ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠ° Π΄ΠΎΠ½ΠΎΡΡΠΊΠΈΡ Π»Π΅Π³ΠΊΠΈΡ (ΠΏΠ΅ΡΠ²ΠΎΠ΅ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ Π² Π ΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ Π€Π΅Π΄Π΅ΡΠ°ΡΠΈΠΈ)
Lung transplantation is the final treatment option for end-stage lung failure. In 2019, 63,530 lung transplants wereΒ performed worldwide [13]. Due to the variety of diseases causing patients to resort to lung transplant surgeries,Β there is a wide range of different complications and conditions that are subject to an individual clinical approachΒ to determine treatment tactics. Each case is of great clinical interest due to the small amount of these operationsΒ and the complexity of postoperative rehabilitation, which requires a multidisciplinary approach [12]. We present aΒ report on a surgical treatment of expiratory tracheal stenosis in combination with bronchiectasis in a lung recipient.Π’ΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
β Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π»Π΅ΡΠ΅Π½ΠΈΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π»Π΅Π³ΠΊΠΈΡ
Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉΒ ΡΡΠ°Π΄ΠΈΠΈ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ. Π 2019 Π³ΠΎΠ΄Ρ Π² ΠΌΠΈΡΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ 63 530 ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΉ Π»Π΅Π³ΠΊΠΈΡ
[13].Β Π ΡΠΈΠ»Ρ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±ΡΠ°Π·ΠΈΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ°Π΄ΠΊΠ΅ Π»Π΅Π³ΠΊΠΈΡ
, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΠΎΠΊΠΈΠΉΒ ΡΠΏΠ΅ΠΊΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ ΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΡΒ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°ΠΊΡΠΈΠΊΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΆΠ΄ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΎΠ³ΡΠΎΠΌΠ½ΡΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Ρ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈΒ Π·ΡΠ΅Π½ΠΈΡ Π² ΡΠΈΠ»Ρ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π°Π½Π½ΡΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ ΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ,Β ΡΡΠ΅Π±ΡΡΡΠ΅ΠΉ ΠΌΡΠ»ΡΡΠΈΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° [12]. ΠΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌΒ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Π½ΠΎΠ·Π° ΡΡΠ°Ρ
Π΅ΠΈ Π²Β ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Π±ΡΠΎΠ½Ρ
ΠΎΡΠΊΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°Β ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
Π’ΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ ΠΏΡΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ Π»Π΅Π³ΠΎΡΠ½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅ΡΡΠ΅Π½Π·ΠΈΠΈ: ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°
Lung transplantation (LT) for idiopathic pulmonary arterial hypertension (IPAH) now is the only radical treatment of this disease.Aim: to analyze own experience of performing LT in patients with IPAH.Materials and methods. 8 adult IPAH patients, who underwent LT between 2014 and october 2018, were included. In 7 of 8 patients undergoing bilateral lung transplantation on intraoperative venoarterial extracorporeal membrane oxygenation (VA ECMO) with prolongation into the postoperative period.Results. VA ECMO support was prolonged into postoperative period 6 and 7 days respectively in 2 (25,0%) patients and 3 days in 6 (75,0%) patients. Hospital mortality in IPAH patients was 1.Conclusions. Own experience demonstrates that LT is an effective method of treatment in patients with IPAH. Hospital, 1- and 3-year survival rates for the patient collective were 87.5, 75.0 and 75.0% respectively.ΠΠ΅ΡΠ²ΠΈΡΠ½Π°Ρ Π»Π΅Π³ΠΎΡΠ½Π°Ρ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ Π³ΠΈΠΏΠ΅ΡΡΠ΅Π½Π·ΠΈΡ (ΠΠΠΠ) β Π½Π΅ΠΎΠ±ΡΠ°ΡΠΈΠΌΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
(Π’Π).Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: Π°Π½Π°Π»ΠΈΠ· ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π’Π Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΠΠΠ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠΈΠ»ΠΈ 8 Π²Π·ΡΠΎΡΠ»ΡΡ
ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠΌ Π±ΡΠ»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° Π’Π Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 2014-Π³ΠΎ ΠΏΠΎ ΠΎΠΊΡΡΠ±ΡΡ 2018 Π³. ΠΡΠ΅ΠΌ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠ°ΠΌ Π±ΡΠ»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° Π΄Π²ΡΡΡΠΎΡΠΎΠ½Π½ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
. Π£ 7 ΠΈΠ· 8 ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² Π’Π ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΠ ΠΠΠΠ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΠΏΠ΅ΡΠ²ΠΈΡΠ½Π°Ρ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΡ 3-ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ISHLT ΡΠ°Π·Π²ΠΈΠ»Π°ΡΡ Ρ 2 (25,0%) ΠΈΠ· 8 ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ², ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡΠ²ΠΈΠ»Π°ΡΡ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΏΡΠ΅ΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΠΠ ΠΠΠΠ. ΠΠ±ΡΠ°Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΠΠΠ Ρ ΡΡΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (n = 2) ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 6 ΠΈ 7 ΡΡΡΠΎΠΊ. Π£ Π΄ΡΡΠ³ΠΈΡ
6 (75,0%) ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ°Π½Π½Π΅ΠΉ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΡΠ°ΠΆΠ΅Π½Π½ΡΡ
Π»Π΅Π³ΠΊΠΈΡ
Π½Π΅ Π½ΠΎΡΠΈΠ»ΠΈ ΡΡΠΎΠ»Ρ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ° (2-Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΏΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ISHLT), ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΠ ΠΠΠΠ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 3 ΡΡΡΠΎΠΊ. ΠΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½Π°Ρ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΡ Ρ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ
, ΠΎΠΏΠ΅ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΠΠΠ, ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 1 Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠ΅.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. Π‘ΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΎΠΏΡΡ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅Ρ, ΡΡΠΎ Π’Π ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π»Π΅ΡΠ΅Π±Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠΉ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΠΠΠ Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ Π³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ, 1- ΠΈ 3-Π»Π΅ΡΠ½Π΅ΠΉ Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ 87,5; 75,0 ΠΈ 75,0%
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΡΠΈΠΎΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ ΠΈ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-Π»Π΅Π³ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°
Bronchial complications, along with development and progression of chronic dysfunction on the background of chronic rejection, are factors that reduce the quality and life of lung and heart-lung recipients. They also increase the frequency of hospitalizations. Application of cryotechnology is based on the contact effect of extremely low temperatures on organs and tissues using a cryoprobe. This article demonstrates the experience of using cryotechnology in the diagnosis and treatment of complications in lung and heart-lung recipients.ΠΡΠΎΠ½Ρ
ΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡ Π½Π°ΡΡΠ΄Ρ Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΠΈ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΡΠΎΠ½Π΅ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΡΠΎΡΠΆΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ, ΡΠ½ΠΈΠΆΠ°ΡΡΠΈΠΌΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΆΠΈΠ·Π½ΠΈ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ
ΠΈ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-Π»Π΅Π³ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΠΈΠΌΠΈ ΡΠ°ΡΡΠΎΡΡ Π³ΠΎΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΉ. Π ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΡΠΈΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π»Π΅ΠΆΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΈΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ Π½Π° ΠΎΡΠ³Π°Π½Ρ ΠΈ ΡΠΊΠ°Π½ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΡΠΈΠΎΠ·ΠΎΠ½Π΄Π°. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅ΡΡΡ ΠΎΠΏΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΡΠΈΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ Ρ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ
ΠΈ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-Π»Π΅Π³ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°
- β¦