142 research outputs found
Charge echo in a Cooper-pair box
A spin-echo-type technique is applied to an artificial two-level system that
utilizes charge degree of freedom in a small superconducting electrode.
Gate-voltage pulses are used to produce the necessary pulse sequence in order
to eliminate the inhomogeneity effect in the time-ensemble measurement and to
obtain refocused echo signals. Comparison of the decay time of the observed
echo signal with estimated decoherence time suggests that low-frequency
energy-level fluctuations due to the 1/f charge noise dominate the dephasing in
the system.Comment: 4 pages, 3 figure
Quantum noise in the Josephson charge qubit
We study decoherence of the Josephson charge qubit by measuring energy
relaxation and dephasing with help of the single-shot readout. We found that
the dominant energy relaxation process is a spontaneous emission induced by
quantum noise coupled to the charge degree of freedom. Spectral density of the
noise at high frequencies is roughly proportional to the qubit excitation
energy.Comment: Submitted to Phys. Rev. Letter
Parity effect in superconducting aluminum single electron transistors with spatial gap profile controlled by film thickness
We propose a novel method for suppression of quasiparticle poisoning in Al
Coulomb blockade devices. The method is based on creation of a proper energy
gap profile along the device. In contrast to the previously used techniques,
the energy gap is controlled by the film thickness. Our transport measurements
confirm that the quasiparticle poisoning is suppressed and clear 2
periodicity is observed only when the island is made much thinner than the
leads. This result is consistent with the existing model and provides a simple
method to suppress quasiparticle poisoning
Temperature square dependence of the low frequency 1/f charge noise in the Josephson junction qubits
To verify the hypothesis about the common origin of the low frequency 1/f
noise and the quantum f noise recently measured in the Josephson charge qubits,
we study temperature dependence of the 1/f noise and decay of coherent
oscillations. T^2 dependence of the 1/f noise is experimentally demonstrated,
which supports the hypothesis. We also show that dephasing in the Josephson
charge qubits off the electrostatic energy degeneracy point is consistently
explained by the same low frequency 1/f noise that is observed in the transport
measurements.Comment: 4 pages, 2 figure
Parametric coupling for superconducting qubits
We propose a scheme to couple two superconducting charge or flux qubits
biased at their symmetry points with unequal energy splittings. Modulating the
coupling constant between two qubits at the sum or difference of their two
frequencies allows to bring them into resonance in the rotating frame.
Switching on and off the modulation amounts to switching on and off the
coupling which can be realized at nanosecond speed. We discuss various physical
implementations of this idea, and find that our scheme can lead to rapid
operation of a two-qubit gate.Comment: 6 page
Single-shot measurement of the Josephson charge qubit
We demonstrate single-shot readout of quantum states of the Josephson charge
qubit. The quantum bits are transformed into and stored as classical bits
(charge quanta) in a dynamic memory cell - a superconducting island. The
transformation of state |1> (differing form state |0> by an extra Cooper pair)
is a result of a controllable quasiparticle tunneling to the island. The charge
is then detected by a conventional single-electron transistor,
electrostatically decoupled from the qubit. We study relaxation dynamics in the
system and obtain the readout efficiency of 87% and 93% for |1> and |0> states,
respectively.Comment: submitted to Rapid Communications of Phys. Rev. B (february 2004
Electromagnetically induced transparency on a single artificial atom
We present experimental observation of electromagnetically induced
transparency (EIT) on a single macroscopic artificial "atom" (superconducting
quantum system) coupled to open 1D space of a transmission line. Unlike in a
optical media with many atoms, the single atom EIT in 1D space is revealed in
suppression of reflection of electromagnetic waves, rather than absorption. The
observed almost 100 % modulation of the reflection and transmission of
propagating microwaves demonstrates full controllability of individual
artificial atoms and a possibility to manipulate the atomic states. The system
can be used as a switchable mirror of microwaves and opens a good perspective
for its applications in photonic quantum information processing and other
fields
Dynamics of coherent and incoherent emission from an artificial atom in a 1D space
We study dynamics of an artificial two-level atom in an open 1D space by
measuring evolution of its coherent and incoherent emission. States of the atom
-- a superconducting flux qubit coupled to a transmission line -- are fully
controlled by resonant excitation microwave pulses. The coherent emission -- a
direct measure of superposition in the atom -- exhibits decaying oscillations
shifted by from oscillations of the incoherent emission, which, in
turn, is proportional to the atomic population. The emission dynamics provides
information about states and properties of the atom. By measuring the coherent
dynamics, we derive two-time correlation function of fluctuations and, using
quantum regression formula, reconstruct the incoherent spectrum of the
resonance fluorescence triplet, which is in a good agreement with the directly
measured one.Comment: 4 pages, 4 figure
A nonlinear mechanism of charge qubit decoherence in a lossy cavity: the quasi normal mode approach
In the viewpoint of quasi normal modes, we describe a novel decoherence
mechanism of charge qubit of Josephson Junctions (JJ) in a lossy micro-cavity,
which can appear in the realistic experiment for quantum computation based on
JJ qubit. We show that the nonlinear coupling of a charge qubit to quantum
cavity field can result in an additional dissipation of resonant mode due to
its effective interaction between those non-resonant modes and a resonant mode,
which is induced by the charge qubit itself. We calculate the characterized
time of the novel decoherence by making use of the system plus bath method.Comment: 6 pages, 2 figur
Testing the validity of THz reflection spectra by dispersion relations
Complex response function obtained in reflection spectroscopy at terahertz
range is examined with algorithms based on dispersion relations for integer
powers of complex reflection coefficient, which emerge as a powerful and yet
uncommon tools in examining the consistency of the spectroscopic data. It is
shown that these algorithms can be used in particular for checking the success
of correction of the spectra by the methods of Vartiainen et al [1] and
Lucarini et al [2] to remove the negative misplacement error in the terahertz
time-domain spectroscopy.Comment: 17 pages, 4 figure
- …