172 research outputs found

    Orbiton-mediated multi-phonon scattering in La1x_{1-x}Srx_xMnO3_3

    Full text link
    We report on Raman scattering measurements of single crystalline La1x_{1-x}Srx_xMnO3_3 (xx=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct features: (i) anomalies in peak energy and its relative intensity and (ii) a pronounced temperature-, polarization-, and doping-dependence. These features suggest a mixed orbiton-phonon nature of the observed multi-phonon Raman spectra.Comment: 6pages, 6figures, submitted to PR

    Existence of orbital polarons in ferromagnetic insulating La1x_{1-x}Srx_xMnO3_{3} (0.11<x<<x<0.14) evidenced by giant phonon softening

    Full text link
    We present an inelastic light scattering study of single crystalline (La1y_{1-y}Pry_y)1x_{1-x}Srx_{x}MnO3_3 (0x0.140\leq x\leq0.14,y=0y=0 and x=1/8x=1/8,0y0.50\leq y\leq0.5). A giant softening up to 20 - 30 cm1^{-1} of the Mn-O breathing mode has been observed only for the ferromagnetic insulating (FMI) samples (0.11x0.140.11\leq x \leq 0.14) upon cooling below the Curie temperature. With increasing Pr-doping the giant softening is gradually suppressed. This is attributed to a coupling of the breathing mode to orbital polarons which are present in the FMI phase.Comment: 4 pages, 5 figure

    Coexistence of Superconductivity and Magnetism in FeSe_1-x under Pressure

    Full text link
    An extended investigation of the electronic phase diagram of FeSe1x_{1-x} up to pressures of p2.4p\simeq2.4\,GPa by means of ac and dc magnetization, zero field muon spin rotation (ZF μ\muSR), and neutron diffraction is presented. ZF μ\muSR indicates that at pressures p0.8p\geq0.8\,GPa static magnetic order occurs in FeSe1x_{1-x} and occupies the full sample volume for p1.2p\gtrsim 1.2\,GPa. ac magnetization measurements reveal that the superconducting volume fraction stays close to 100% up to the highest pressure investigated. In addition, above p1.2p\geq1.2\,GPa both the superconducting transition temperature TcT_{\rm c} and the magnetic ordering temperature TNT_{\rm N} increase simultaneously, and both superconductivity and magnetism are stabilized with increasing pressure. Calculations indicate only one possible muon stopping site in FeSe1x_{1-x}, located on the line connecting the Se atoms along the cc-direction. Different magnetic structures are proposed and checked by combining the muon stopping calculations with a symmetry analysis, leading to a similar structure as in the LaFeAsO family of Fe-based superconductors. Furthermore, it is shown that the magnetic moment is pressure dependent and with a rather small value of μ0.2μB\mu\approx 0.2\,\mu_B at p2.4p\simeq2.4\,GPa.Comment: 11 pages, 9 figure

    Helical fluctuations in the Raman response of the topological insulator Bi2Se3

    Full text link
    The topological insulator Bi2Se3 shows a Raman scattering response related to topologically protected surface states amplified by a resonant interband transition. Most significantly this signal has a characteristic Lorentzian lineshape and spin-helical symmetry due to collision dominated scattering of Dirac states at the Fermi level E_F on bulk valence states. Its resonance energy, temperature and doping dependence points to a high selectivity of this process. Its scattering rate (Gamma=40 cm-1=5 meV) is comparable to earlier observations, e.g. in spin-polaron systems. Although the observation of topological surface states in Raman scattering is limited to resonance conditions, this study represents a quite clean case which is not polluted by symmetry forbidden contributions from the bulkComment: 12 pages, 5 figures, 1 tabl

    Influence of Co3+^{3+} spin-state on optical properties of LaCoO3_3 and HoCoO3_3

    Full text link
    Optical properties of the isoelectronic compounds LaCoO3_3 and HoCoO3_3 has been experimentally and theoretically investigated. We've measured the real ϵ1(ω)\epsilon_1(\omega) and imaginary ϵ2(ω)\epsilon_2(\omega) parts of the dielectric function, reflectance R(ω)R(\omega) and optical conductivity at room temperature. The shift of the most pronounced spectral features to the high energy region on 0.3 eV associated with larger distortions due to the smaller rare earth ionic radii in HoCoO3_3 in comparison with LaCoO3_3 was observed. Also there was found an enhancement of absorption intensity in the range 1.3-2.3 eV in all kinds of spectra in HoCoO3_3, which can be attributed basing on the results of LDA+U calculations to the different spin-states of Co3+^{3+} ion in these compounds. The shift of the onset of the absorption from less than 0.1 eV in LaCoO3_3 to 0.7 eV in HoCoO3_3 and an absorption intensity enhancement in a narrow spectral range 1.2-2.6 eV in HoCoO3_3 are clearly seen from the calculated convolution of partial densities of states obtained in the LDA+U approach. Such changes are assumed to be induced by the different Co3+^{3+} spin-state in these compounds at room temperature.Comment: 10 pages, 3 figure

    Bond-Stretching-Phonon Anomalies in Stripe-Ordered La(1.69)Sr(0.31)NiO(4)

    Full text link
    We report a neutron scattering study of bond-stretching phonons in La(1.69)Sr(0.31)NiO(4), a doped antiferromagnet in which the added holes order in diagonal stripes at 45 deg to the Ni-O bonds. For the highest-energy longitudinal optical mode along the bonds, a softening of 20% is observed between the Brillouin zone center and zone boundary. At 45 deg to the bonds, a splitting of the same magnitude is found across much of the zone. Surprisingly, the charge-ordering wave vector plays no apparent role in the anomalous dispersions. The implications for related anomalies in the cuprates are discussed.Comment: 4 two-col pages, including 4 figures (2 in color); references added and updated Final version, accepted for publication in PR

    Magnetic ordering in Co2+-containing layered double hydroxides via the low-temperature heat capacity and magnetisation study

    Get PDF
    The low-temperature heat capacity and the magnetisation of Co2+ n Al3+ layered double hydroxides (LDH) with the cobalt-to-aluminium ratio n = 2 and 3 and intercalated with different anions have been studied in a wide range of magnetic fields up to 50 kOe. The heat capacity, C(T), was found to demonstrate a Schottky-like anomaly observed as a broad local maximum in the temperature dependence below 10 K. The effect is caused by a splitting of the ground-state Kramers doublet of Co2+ in the internal exchange field and correlates with magnetic ordering in these LDH. In low applied fields, the temperature-dependent dc magnetic susceptibility demonstrates a pronounced rise, which is associated with an onset of magnetic ordering. Both the heat capacity anomaly and the magnetic susceptibility peak are more pronounced for the LDH with n = 2 than for those with n = 3. This feature is associated with an excess of the honeycomb-like Co–Al coordination (which corresponds to a 2:1 Co–Al ordering) over the statistical cation distribution in Co2Al LDH, while a rather random cobalt-aluminium distribution is typical for Co3Al LDH. The temperature of the Schottky-like anomaly measured in a zero field is independent of the interlayer distance. Application of the magnetic field results in a widening of the anomaly range and a shift to higher temperatures. The observed experimental data are typical for a cluster spin glass ground state.publishe

    Adiabatic description of nonspherical quantum dot models

    Full text link
    Within the effective mass approximation an adiabatic description of spheroidal and dumbbell quantum dot models in the regime of strong dimensional quantization is presented using the expansion of the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the peculiarities are considered for spectral and optical characteristics of the models with axially symmetric confining potentials depending on their geometric size making use of the total sets of exact and adiabatic quantum numbers in appropriate analytic approximations

    An approach to verification and validation of MHD codes for fusion applications

    Get PDF
    We propose a new activity on verification and validation (V&amp;V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&amp;V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&amp;V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/paper
    corecore