389 research outputs found

    THE POTENTIAL OF PHYSIOLOGICAL ANALYSIS USING ELECTROMYOGRAPHY IN THE DESIGN OF MOTORCYCLES

    Get PDF
    Two-wheel vehicle comfort is usually assessed by means of subjective scorings or by measuring physical quantities such as acceleration, sound pressure, etc. which do not depend on the human response. This study has chosen a different approach, which is to use electromyography for evaluating the levels of muscle activity. It focuses more specifically on comfort in relation to aerodynamic loads. The loads were simulated by a wind tunnel. ANOVA statistical analysis was used to establish the impact of aerodynamic loads and of various motorcycle models on muscle activity levels. The results showed that aerodynamic loads generally cause an increase of muscle activity, although their impact varies in relation to the design of the motorcycle: each model ofmotorcycle produces a specific distribution of activity levels among muscles. The methodology can be used for vehicle-design purposes as well as organising motorbike training programmes.Keywords: Motorcycle; Aerodynamic loads; SEM; Ergonomics; Comfor

    Investigation of genomic DNA methylation by ultraviolet resonant Raman spectroscopy

    Get PDF
    Cytosine plays a preeminent role in DNA methylation, an epigenetic mechanism that regulates gene expression, the misregulation of which can lead to severe diseases. Several methods are nowadays employed for assessing the global DNA methylation levels, but none of them combines simplicity, high sensitivity, and low operating costs to be translated into clinical applications. Ultraviolet (UV) resonant Raman measurements at excitation wavelengths of 272 nm, 260 nm, 250 nm, and 228 nm have been carried out on isolated deoxynucleoside triphosphates (dNTPs), on a dNTP mixture as well as on genomic DNA (gDNA) samples, commercial from salmon sperm and non-commercial from B16 murine melanoma cell line. The 228 nm excitation wavelength was identified as the most suitable energy for enhancing cytosine signals over the other DNA bases. The UV Raman measurements performed at this excitation wavelength on hyper-methylated and hypo-methylated DNA from Jurkat leukemic T-cell line have revealed significant spectral differences with respect to gDNA isolated from salmon sperm and mouse melanoma B16 cells. This demonstrates how the proper choice of the excitation wavelength, combined with optimized extraction protocols, makes UV Raman spectroscopy a suitable technique for highlighting the chemical modifications undergone by cytosine nucleotides in gDNA upon hyper- and hypo-methylation events

    The A to I editing landscape in melanoma and its relation to clinical outcome

    Full text link
    RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies

    Morphological and Chemical Investigation of Ovarian Structures in a Bovine Model by Contrast-Enhanced X-ray Imaging and Microscopy

    Get PDF
    An improved understanding of an ovary’s structures is highly desirable to support advances in folliculogenesis knowledge and reproductive medicine, with particular attention to fertility preservation options for prepubertal girls with malignant tumors. Although currently the golden standard for structural analysis is provided by combining histological sections, staining, and visible 2D microscopic inspection, synchrotron radiation phase-contrast microtomography is becoming a new challenge for three-dimensional studies at micrometric resolution. To this aim, the proper use of contrast agents can improve the visualization of internal structures in ovary tissues, which normally present a low radiopacity. In this study, we report a comparison of four staining protocols, based on iodine or tungsten containing agents, applied to bovine ovarian tissues fixed in Bouin’s solution. The microtomography (microCT) analyses at two synchrotron facilities under different set-ups were performed at different energies in order to maximize the image contrast. While tungsten-based agents allow large structures to be well identified, Iodine ones better highlight smaller features, especially when acquired above the K-edge energy of the specific metal. Further scans performed at lower energy where the setup was optimized for overall quality and sensitivity from phase-contrast still provided highly resolved visualization of follicular and intrafollicular structures at different maturation stages, independent of the staining protocol. The analyses were complemented by X-ray Fluorescence mapping on 2D sections, showing that the tungsten-based agent has a higher penetration in this type of tissues

    Impact of Sample Preparation Methods on Single-Cell X-ray Microscopy and Light Elemental Analysis Evaluated by Combined Low Energy X-ray Fluorescence, STXM and AFM

    Get PDF
    Background: Although X-ray fluorescence microscopy is becoming a widely used technique for single-cell analysis, sample preparation for this microscopy remains one of the main challenges in obtaining optimal conditions for the measurements in the X-ray regime. The information available to researchers on sample treatment is inadequate and unclear, sometimes leading to wasted time and jeopardizing the experiment's success. Many cell fixation methods have been described, but none of them have been systematically tested and declared the most suitable for synchrotron X-ray microscopy. Methods: The HEC-1-A endometrial cells, human spermatozoa, and human embryonic kidney (HEK-293) cells were fixed with organic solvents and cross-linking methods: 70% ethanol, 3.7%, and 2% paraformaldehyde; in addition, HEK-293 cells were subjected to methanol/ C3H6O treatment and cryofixation. Fixation methods were compared by coupling low-energy X-ray fluorescence with scanning transmission X-ray microscopy and atomic force microscopy. Results: Organic solvents lead to greater dehydration of cells, which has the most significant effect on the distribution and depletion of diffusion elements. Paraformaldehyde provides robust and reproducible data. Finally, the cryofixed cells provide the best morphology and element content results. Conclusion: Although cryofixation seems to be the most appropriate method as it allows for keeping cells closer to physiological conditions, it has some technical limitations. Paraformaldehyde, when used at the average concentration of 3.7%, is also an excellent alternative for X-ray microscopy

    A Novel Liposome-Based Adjuvant CAF01 for Induction of CD8+ Cytotoxic T-Lymphocytes (CTL) to HIV-1 Minimal CTL Peptides in HLA-A*0201 Transgenic Mice

    Get PDF
    Background: Specific cellular cytotoxic immune responses (CTL) are important in combating viral diseases and a highly desirable feature in the development of targeted HIV vaccines. Adjuvants are key components in vaccines and may assist the HIV immunogens in inducing the desired CTL responses. In search for appropriate adjuvants for CD8+ T cells it is important to measure the necessary immunological features e.g. functional cell killing/lysis in addition to immunological markers that can be monitored by simple immunological laboratory methods. Methodology/Principal Findings: We tested the ability of a novel two component adjuvant, CAF01, consisting of the immune stimulating synthetic glycolipid TDB (Trehalose-Dibehenate) incorporated into cationic DDA (Dimethyldioctade-cylammonium bromide) liposomes to induce CD8+ T-cell restricted cellular immune responses towards subdominant minimal HLA-A0201-restricted CTL epitopes from HIV-1 proteins in HLA-A*0201 transgenic HHD mice. CAF01 has an acceptable safety profile and is used in preclinical development of vaccines against HIV-1, malaria and tuberculosis. Conclusions/Significance: We found that CAF01 induced cellular immune responses against HIV-1 minimal CTL epitopes in HLA-A*0201 transgenic mice to levels comparable with that of incomplete Freund’s adjuvant

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Search for the standard model Higgs boson at LEP

    Get PDF

    Transition from Persistent to Anti-Persistent Correlations in Postural Sway Indicates Velocity-Based Control

    Get PDF
    The displacement of the center-of-pressure (COP) during quiet stance has often been accounted for by the control of COP position dynamics. In this paper, we discuss the conclusions drawn from previous analyses of COP dynamics using fractal-related methods. On the basis of some methodological clarification and the analysis of experimental data using stabilogram diffusion analysis, detrended fluctuation analysis, and an improved version of spectral analysis, we show that COP velocity is typically bounded between upper and lower limits. We argue that the hypothesis of an intermittent velocity-based control of posture is more relevant than position-based control. A simple model for COP velocity dynamics, based on a bounded correlated random walk, reproduces the main statistical signatures evidenced in the experimental series. The implications of these results are discussed
    • …
    corecore