29 research outputs found

    Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer’s disease

    Get PDF
    Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-β (Aβ) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aβ ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aβ-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aβ-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aβ and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aβ and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression

    Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer’s disease

    No full text
    Abstract Background Visinin-like protein-1 (VILIP-1) and chitinase-3-like protein 1 (CHI3L1 or YKL-40) in cerebrospinal fluid (CSF) are newly discovered markers indicating neuronal damage and microglial activation, respectively. Phosphorylated tau (p-tau) reflects the neuropathology of Alzheimer’s disease (AD) and is useful as diagnostic markers for AD. However, it is unknown whether these biomarkers have similar or complementary information in AD. Methods We stratified 121 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database into cognitively normal (CN), stable mild cognitive impairment (sMCI), progressive MCI (pMCI), and dementia due to AD. Analysis of covariance (ANOVA) and chi-square analyses, Spearman correlation, and logistic regression models were performed to test the demographic, associations between biomarkers, and diagnostic accuracies, respectively. Linear mixed-effects models were used to evaluate the effects of CSF amyloid-β (Aβ) on above biomarkers within diagnostic groups, the combination of diagnostic group and Aβ status as predictor, and CSF biomarkers as predictors of AD features, including cognition measured by Mini–Mental State Examination (MMSE) and brain structure and white matter hyperintensity (WMH) measured by magnetic resonance imaging (MRI). Results P-tau, VILIP-1, and YKL-40 were all predictors of AD diagnosis, but combinations of biomarkers did not improve the diagnostic accuracy (AUC 0.924 for p-tau, VILIP-1, and YKL-40) compared to p-tau (AUC 0.922). P-tau and VILIP-1 were highly correlated (r = 0.639, p < 0.001) and strongly associated with Aβ pathology across clinical stages of AD, while YKL-40 was correlated with Aβ pathology in CN and AD groups. VILIP-1 was associated with acceleration of cognitive decline, hippocampal atrophy, and expansion of ventricles in longitudinal analyses. YKL-40 was associated with hippocampal atrophy at baseline and follow-up, while p-tau was only associated with worsening WMH at baseline. Conclusions CSF levels of p-tau, VILIP-1, and YKL-40 may have utility for discriminating between cognitively normal subjects and patients with AD. Increased levels of both VILIP-1 and YKL-40 may be associated with disease degeneration. These CSF biomarkers should be considered for future assessment in the characterization of the natural history of AD

    Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer’s disease

    No full text
    Abstract Background There is accumulating evidence that synaptic loss precedes neuronal loss and correlates best with impaired memory formation in Alzheimer’s disease (AD). Cerebrospinal fluid (CSF) synaptosomal-associated protein 25 (SNAP-25) is a newly discovered marker indicating synaptic damage. We here test CSF SNAP-25 and SNAP-25/amyloid-β42 (Aβ42) ratio as a diagnostic marker for predicting cognitive decline and brain structural change in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Methods We stratified 139 participants from the ADNI database into cognitively normal (CN; n = 52), stable mild cognitive impairment (sMCI; n = 22), progressive MCI (pMCI; n = 47), and dementia due to AD (n = 18). Spearman correlation was performed to test the relationships between biomarkers. Overall diagnostic accuracy (area under the curve (AUC)) was obtained from receiver operating curve (ROC) analyses. Cox proportional hazard models tested the effect of CSF SNAP-25 and SNAP-25/Aβ42 measures on the conversion from MCI to AD. Relationships between the CSF SNAP-25 levels, SNAP-25/Aβ42 ratio, and diagnostic groups were tested with linear regressions. Linear mixed-effects models and linear regression models were used to evaluate CSF SNAP-25 and SNAP-25/Aβ42 as predictors of AD features, including cognition measured by the Mini-Mental State Examination (MMSE) and brain structure and white matter hyperintensity (WMH) measured by magnetic resonance imaging (MRI). Results CSF SNAP-25 and SNAP-25/Aβ42 were increased in patients with pMCI and AD compared with CN, and in pMCI and AD compared with sMCI. Cognitively normal subjects who progressed to MCI or AD during follow-up had increased SNAP-25/Aβ42 ratio compared with nonprogressors. CSF SNAP-25, especially SNAP-25/Aβ42, offers diagnostic utility for pMCI and AD. CSF SNAP-25 and SNAP-25/Aβ42 significantly predicted conversion from MCI to AD. In addition, elevated SNAP-25/Aβ42 ratio was associated with the rate of hippocampal atrophy in pMCI and the rate of change of cognitive impairment in CN over the follow-up period. Conclusions These data suggest that both CSF SNAP-25 and SNAP-25/Aβ42 ratio are already increased at the early clinical stage of AD, and indicate the promise of CSF SNAP-25 and SNAP-25/Aβ42 ratio as diagnostic and prognostic biomarkers for the earliest symptomatic stage of AD

    Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain

    No full text
    Abstract Background 18F-THK5351 is a quinoline-derived tau imaging agent with high affinity to paired helical filaments (PHF). However, high levels of 18F-THK5351 retention in brain regions thought to contain negligible concentrations of PHF raise questions about the interpretation of the positron emission tomography (PET) signals, particularly given previously described interactions between quinolone derivatives and monoamine oxidase B (MAO-B). Here, we tested the effects of MAO-B inhibition on 18F-THK5351 brain uptake using PET and autoradiography. Methods Eight participants (five mild cognitive impairment, two Alzheimer’s disease, and one progressive supranuclear palsy) had baseline 18F-AZD4694 and 18F-THK5351 scans in order to quantify brain amyloid and PHF load, respectively. A second 18F-THK5351 scan was conducted 1 week later, 1 h after a 10-mg oral dose of selegiline. Three out of eight patients also had a third 18F-THK5351 scan 9–28 days after the selegiline administration. The primary outcome measure was standardized uptake value (SUV), calculated using tissue radioactivity concentration from 50 to 70 min after 18F-THK5351 injection, normalizing for body weight and injected radioactivity. The SUV ratio (SUVR) was determined using the cerebellar cortex as the reference region. 18F-THK5351 competition autoradiography studies in postmortem tissue were conducted using 150 and 500 nM selegiline. Results At baseline, 18F-THK5351 SUVs were highest in the basal ganglia (0.64 ± 0.11) and thalamus (0.62 ± 0.14). In the post-selegiline scans, the regional SUVs were reduced on average by 36.7% to 51.8%, with the greatest reduction noted in the thalamus (51.8%) and basal ganglia (51.4%). MAO-B inhibition also reduced 18F-THK5351 SUVs in the cerebellar cortex (41.6%). The SUVs remained reduced in the three patients imaged at 9–28 days. Tissue autoradiography confirmed the effects of MAO-B inhibition on 18F-THK5351 uptake. Conclusions These results indicate that the interpretation of 18F-THK5351 PET images, with respect to tau, is confounded by the high MAO-B availability across the entire brain. In addition, the heterogeneous MAO-B availability across the cortex may limit the interpretation of 18F-THK5351 scans using reference region methods

    In vivo quantification of neurofibrillary tangles with [18F]MK-6240

    No full text
    Abstract Background Imaging agents capable of quantifying the brain’s tau aggregates will allow a more precise staging of Alzheimer’s disease (AD). The aim of the present study was to examine the in vitro properties as well as the in vivo kinetics, using gold standard methods, of the novel positron emission tomography (PET) tau imaging agent [18F]MK-6240. Methods In vitro properties of [18F]MK-6240 were estimated with autoradiography in postmortem brain tissues of 14 subjects (seven AD patients and seven age-matched controls). In vivo quantification of [18F]MK-6240 binding was performed in 16 subjects (four AD patients, three mild cognitive impairment patients, six healthy elderly individuals, and three healthy young individuals) who underwent 180-min dynamic scans; six subjects had arterial sampling for metabolite correction. Simplified approaches for [18F]MK-6240 quantification were validated using full kinetic modeling with metabolite-corrected arterial input function. All participants also underwent amyloid-PET and structural magnetic resonance imaging. Results In vitro [18F]MK-6240 uptake was higher in AD patients than in age-matched controls in brain regions expected to contain tangles such as the hippocampus, whereas no difference was found in the cerebellar gray matter. In vivo, [18F]MK-6240 displayed favorable kinetics with rapid brain delivery and washout. The cerebellar gray matter had low binding across individuals, showing potential for use as a reference region. A reversible two-tissue compartment model well described the time–activity curves across individuals and brain regions. Distribution volume ratios using the plasma input and standardized uptake value ratios (SUVRs) calculated after the binding approached equilibrium (90 min) were correlated and higher in mild cognitive impairment or AD dementia patients than in controls. Reliability analysis revealed robust SUVRs calculated from 90 to 110 min, while earlier time points provided inaccurate estimates. Conclusions This evaluation shows an [18F]MK-6240 distribution in concordance with postmortem studies and that simplified quantitative approaches such as the SUVR offer valid estimates of neurofibrillary tangle load 90 min post injection. [18F]MK-6240 is a promising tau tracer with the potential to be applied in the disease diagnosis and assessment of therapeutic interventions

    Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloid-positive individuals

    Get PDF
    Introduction: Neurofilament light chain (NfL) is a promising blood biomarker to detect neurodegeneration in Alzheimer's disease (AD) and other brain disorders. However, there are limited reports of how longitudinal NfL relates to imaging biomarkers. We herein investigated the relationship between blood NfL and brain metabolism in AD. Methods: Voxelwise regression models tested the cross-sectional association between [18F]fluorodeoxyglucose ([18F]FDG) and both plasma and cerebrospinal fluid NfL in cognitively impaired and unimpaired subjects. Linear mixed models were also used to test the longitudinal association between NfL and [18F]FDG in amyloid positive (Aβ+) and negative (Aβ−) subjects. Results: Higher concentrations of plasma and cerebrospinal fluid NfL were associated with reduced [18F]FDG uptake in correspondent brain regions. In Aβ+ participants, NfL associates with hypometabolism in AD-vulnerable regions. Longitudinal changes in the association [18F]FDG-NfL were confined to cognitively impaired Aβ+ individuals. Discussion: These findings indicate that plasma NfL is a proxy for neurodegeneration in AD-related regions in Aβ+ subjects

    Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease : a diagnostic performance and prediction modelling study using data from four prospective cohorts

    No full text
    Background: CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy. Methods: We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63–69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses. Findings: We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid β-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21–98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76–100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08–93·11% across cohorts) and amyloid β (AUC=76·14–88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%). Interpretation: Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease. Funding: Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program
    corecore