27 research outputs found

    Immunological aspects of glycosylation: from aberrant to defective glycosylation

    Get PDF
    Glycosylation is crucial in many biological processes, like cell recognition, signaling and development. Many diseases present altered glycosylation and two extremes are cancer and congenital disorders of glycosylation (CDG), with aberrant and defective glycosylation, respectively. Sialic acids are glycans’ terminal sugars with an immunomodulatory role and when decreased, typically activate immune cells, as dendritic cells. Interestingly, both ST6Gal-I and its derived α2,6 sialylation are overexpressed in cancer. Here, we hypothesized that cancer cells secret functional ST6Gal-I that modulates immune cells’ glycosylation and their activity as a cancer immune evasion mechanism. Also interestingly, patients with PMM2-CDG (the most frequent CDG type) present immunological affectation. Here, we hypothesized that the PMM2-CDG-defective glycosylation observed also influences the function of immune cells. Therefore, the main goals of this study comprised the assessment of the immunological aspects of cancer cells and CDG glycosylation. Specifically, we intended to (1) study the expression and secretion of ST6Gal-I by colorectal cancer (CRC) cells and test its function in modulating immune cells activity; (2) develop a PMM2-CDG leukocyte cell line as a model to unravel patients’ immunity and to evaluate their response to mitogenic stimulation. Moreover, as PMM2-CDG have a profound impact in patients’ quality of life (QoL), patient and observer reported outcomes measures (PROMs and ObsROMs) were reviewed. These may integrate primary endpoints in clinical trials to find treatment to PMM2-CDG. Our data demonstrated that (1) CRC cells secret ST6Gal-I enzyme, however further work is needed to evaluate its role in immune modulation; (2) PMM2-CDG T cells have higher proliferation capacity and IFN-γ cytokine expression, in response to a mitogen as compared to the healthy control and (3) there are significant numbers of tools for future evaluation of PMM2-CDG patients’ and caregivers’ QoL. This study may contribute to better understand the glycan-related pathological mechanisms

    Artificial intelligence (AI) in rare diseases: is the future brighter?

    Get PDF
    The amount of data collected and managed in (bio)medicine is ever-increasing. Thus, there is a need to rapidly and efficiently collect, analyze, and characterize all this information. Artificial intelligence (AI), with an emphasis on deep learning, holds great promise in this area and is already being successfully applied to basic research, diagnosis, drug discovery, and clinical trials. Rare diseases (RDs), which are severely underrepresented in basic and clinical research, can particularly benefit from AI technologies. Of the more than 7000 RDs described worldwide, only 5% have a treatment. The ability of AI technologies to integrate and analyze data from different sources (e.g., multi-omics, patient registries, and so on) can be used to overcome RDs' challenges (e.g., low diagnostic rates, reduced number of patients, geographical dispersion, and so on). Ultimately, RDs' AI-mediated knowledge could significantly boost therapy development. Presently, there are AI approaches being used in RDs and this review aims to collect and summarize these advances. A section dedicated to congenital disorders of glycosylation (CDG), a particular group of orphan RDs that can serve as a potential study model for other common diseases and RDs, has also been included.info:eu-repo/semantics/publishedVersio

    the web-based case study of the Immunology and Congenital Disorders of Glycosylation questionnaire (ImmunoCDGQ)

    Get PDF
    Funding Information: This work is financed by national funds from FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences—UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB. R.F. (SFRH/BD/124326/2016) and C.P. (SFRH/BD/138647/2018) acknowledge the funding from the Fundação para a Ciência e Tecnologia (FCT), Portugal. S.B. was supported by CDG & Allies-PPAIN funding (6th Liliana Scientific Scholarship). Publisher Copyright: © 2022, The Author(s).BACKGROUND: Congenital Disorders of Glycosylation (CDG) are a complex family of rare metabolic diseases. Robust clinical data collection faces many hurdles, preventing full CDG biological and clinical comprehension. Web-based platforms offer privileged opportunities for biomedical data gathering, and participant recruitment, particularly in rare diseases. The immunology and CDG electronic (e-) questionnaire (ImmunoCDGQ) explores this paradigm, proposing a people-centric framework to advance health research and participant empowerment. OBJECTIVE: The objectives of this study were to: (1) Describe and characterize the ImmunoCDGQ development, engagement, recruitment, participation, and result dissemination strategies; (2) To critically compare this framework with published literature and making recommendations. METHODS: An international, multistakeholder people-centric approach was initiated to develop and distribute the ImmunoCDGQ, a multi-lingual e-questionnaire able to collect immune-related data directly from patients and family caregivers. An adapted version was produced and distributed among the general "healthy" population (ImmunoHealthyQ), serving as the control group. Literature screening was performed to identify and analyze comparable studies. RESULTS: The ImmunoCDGQ attained high participation and inclusion rates (94.6%, 209 out of 221). Comparatively to the control, CDG participants also showed higher and more variable questionnaire completion times as well as increased English version representativeness. Additionally, 20% of the CDG group (42 out of 209) chose not to complete the entire questionnaire in one go. Conditional logic structuring guided participant data provision and accurate data analysis assignment. Multi-channel recruitment created sustained engagement with Facebook emerging as the most followed social media outlet. Still, most included ImmunoCDGQ questionnaires (50.7%, 106 out of 209) were submitted within the first month of the project's launch. Literature search and analysis showed that most e-questionnaire-based studies in rare diseases are author-built (56.8%, 25 out of 44), simultaneously addressing medical and health-related quality of life (HRQoL) and/or information needs (79.5%, 35 out of 44). Also, over 68% of the studies adopt multi-platform recruitment (30 out of 44) actively supported by patient organizations (52.3%, 23 out of 44). CONCLUSIONS: The ImmunoCDGQ, its methodology and the CDG Community served as models for health research, hence paving a successful and reproducible road to people-centricity in biomedical research.publishersversionpublishe

    the congenital disorders of glycosylation community perspective

    Get PDF
    BACKGROUND: Congenital disorders of glycosylation (CDG) are a large family of rare genetic diseases for which therapies are virtually nonexistent. However, CDG therapeutic research has been expanding, thanks to the continuous efforts of the CDG medical/scientific and patient communities. Hence, CDG drug development is a popular research topic. The main aim of this study was to understand current and steer future CDG drug development and approval by collecting and analysing the views and experiences of the CDG community, encompassing professionals and families. An electronic (e-)survey was developed and distributed to achieve this goal. RESULTS: A total of 128 respondents (46 CDG professionals and 82 family members), mainly from Europe and the USA, participated in this study. Most professionals (95.0%) were relatively familiar with drug development and approval processes, while CDG families revealed low familiarity levels, with 8.5% admitting to never having heard about drug development. However, both stakeholder groups agreed that patients and families make significant contributions to drug development and approval. Regarding their perceptions of and experiences with specific drug development and approval tools, namely biobanks, disease models, patient registries, natural history studies (NHS) and clinical trials (CT), the CDG community stakeholders described low use and participation, as well as variable familiarity. Additionally, CDG professionals and families shared conflicting views about CT patient engagement and related information sharing. Families reported lower levels of involvement in CT design (25.0% declared ever being involved) and information (60.0% stated having been informed) compared to professionals (60.0% and 85.7%, respectively). These contrasting perceptions were further extended to their insights and experiences with patient-centric research. Finally, the CDG community (67.4% of professionals and 54.0% of families) reported a positive vision of artificial intelligence (AI) as a drug development tool. Nevertheless, despite the high AI awareness among CDG families (76.8%), professionals described limited AI use in their research (23.9%). CONCLUSIONS: This community-centric study sheds new light on CDG drug development and approval. It identifies educational, communication and research gaps and opportunities for CDG professionals and families that could improve and accelerate CDG therapy development.publishersversionpublishe

    Sialyl LewisX/A and Cytokeratin Crosstalk in Triple Negative Breast Cancer

    Get PDF
    project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB. Publisher Copyright: © 2023 by the authors.Triple-negative breast cancer (TNBC) encompasses multiple entities and is generally highly aggressive and metastatic. We aimed to determine the clinical and biological relevance of Sialyl-Lewis X and A (sLeX/A)—a fucosylated glycan involved in metastasis—in TNBC. Here, we studied tissues from 50 TNBC patients, transcripts from a TNBC dataset from The Cancer Genome Atlas (TCGA) database, and a primary breast cancer cell line. All 50 TNBC tissue samples analysed expressed sLeX/A. Patients with high expression of sLeX/A had 3 years less disease-free survival than patients with lower expression. In tissue, sLeX/A negatively correlated with cytokeratins 5/6 (CK5/6, which was corroborated by the inverse correlation between fucosyltransferases and CK5/6 genes. Our observations were confirmed in vitro when inhibition of sLeX/A remarkably increased expression of CK5/6, followed by a decreased proliferation and invasion capacity. Among the reported glycoproteins bearing sLeX/A and based on the STRING tool, α6 integrin showed the highest interaction score with CK5/6. This is the first report on the sLeX/A expression in TNBC, highlighting its association with lower disease-free survival and its inverse crosstalk with CK5/6 with α6 integrin as a mediator. All in all, sLeX/A is critical for TNBC malignancy and a potential prognosis biomarker and therapeutic target.publishersversionpublishe

    New Insights into Immunological Involvement in Congenital Disorders of Glycosylation (CDG) from a People-Centric Approach

    Get PDF
    SFRH/BD/124326/2016 SFRH/BD/138647/2018Congenital disorders of glycosylation (CDG) are rare diseases with variable phenotypes and severity. Immunological involvement remains a largely uncharted topic in CDG, mainly due to lack of robust data. To better characterize immune-related manifestations' prevalence, relevance, and quality-of-life (QoL) impact, we developed electronic questionnaires targeting (1) CDG patients and (2) the general "healthy" population. Two-hundred and nine CDG patients/caregivers and 349 healthy participants were included in this study. PMM2-CDG was the most represented CDG (n = 122/209). About half of these participants (n = 65/122) described relevant infections with a noteworthy prevalence of those affecting the gastrointestinal tract (GI) (63.1%, n = 41/65). Infection burden and QoL impact were shown as infections correlated with more severe clinical phenotypes and with a set of relevant non-immune PMM2-CDG signs. Autoimmune diseases had only a marginal presence in PMM2-CDG (2.5%, n = 3/122), all being GI-related. Allergy prevalence was also low in PMM2-CDG (33%, n = 41/122) except for food allergies (26.8%, n = 11/41, of PMM2-CDG and 10.8%, n = 17/158, of controls). High vaccination compliance with greater perceived ineffectiveness (28.3%, n = 17/60) and more severe adverse reactions were described in PMM2-CDG. This people-centric approach not only confirmed literature findings, but created new insights into immunological involvement in CDG, namely by highlighting the possible link between the immune and GI systems in PMM2-CDG. Finally, our results emphasized the importance of patient/caregiver knowledge and raised several red flags about immunological management.publishersversionpublishe

    Drug Repositioning for Congenital Disorders of Glycosylation (CDG)

    Get PDF
    R.F. and acknowledge the funding from the Fundação para a Ciência e Tecnologia (FCT), Portugal. S.B. was supported by CDG & Allies—PAIN funding. M.A. acknowledges PhD program at the DISTABIF, Università degli Studi della Campania “Luigi Vanvitelli”, PhD fellowship POR Campania FSE 2014/2020 “Dottorati di Ricerca Con Caratterizzazione Industriale”.Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders' views on AI for therapy discovery in CDG.publishersversionpublishe

    International consensus guidelines for phosphoglucomutase 1 deficiency (PGM1-CDG): Diagnosis, follow-up, and management

    Get PDF
    P. W. is supported by the Clinical Research Fund, University Hospitals Leuven, Leuven, Belgium. This work is partially funded by the grant titled Frontiers in Congenital Disorders of Glycosylation (1U54NS115198-01) from the National Institute of Neurological Diseases and Stroke (NINDS), the National Center for Advancing Translational Sciences (NCATS), and the Rare Disorders Consortium Research Network (RDCRN) (E. M., K. R., C. F., H. F., C. L., and A. E.)Phosphoglucomutase 1 (PGM1) deficiency is a rare genetic disorder that affects glycogen metabolism, glycolysis, and protein glycosylation. Previously known as GSD XIV, it was recently reclassified as a congenital disorder of glycosylation, PGM1-CDG. PGM1-CDG usually manifests as a multisystem disease. Most patients present as infants with cleft palate, liver function abnormalities and hypoglycemia, but some patients present in adulthood with isolated muscle involvement. Some patients develop life-threatening cardiomyopathy. Unlike most other CDG, PGM1-CDG has an effective treatment option, d-galactose, which has been shown to improve many of the patients' symptoms. Therefore, early diagnosis and initiation of treatment for PGM1-CDG patients are crucial decisions. In this article, our group of international experts suggests diagnostic, follow-up, and management guidelines for PGM1-CDG. These guidelines are based on the best available evidence-based data and experts' opinions aiming to provide a practical resource for health care providers to facilitate successful diagnosis and optimal management of PGM1-CDG patients.preprintpublishe

    state of the art in 2022

    Get PDF
    Funding Information: This work was financed by national funds from FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences—UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB. We also acknowledge the support of the Portuguese Foundation for Science and Technology (FCT) in the scope of the following fellowships: SFRH/BD/138647/2018 (C.P.), and SFRH/BD/124326/2016 (R.F.); the ProDGNE (EJPRD/0001/2020 EU 825575) and the European Commission through GlycoTwinning (Grant agreement 101079417). Publisher Copyright: © 2023, Institut National de la Santé et de la Recherche Médicale (INSERM).Congenital disorders of glycosylation (CDG) are a complex and heterogeneous family of rare metabolic diseases. With a clinical history that dates back over 40 years, it was the recent multi-omics advances that mainly contributed to the fast-paced and encouraging developments in the field. However, much remains to be understood, with targeted therapies' discovery and approval being the most urgent unmet need. In this paper, we present the 2022 state of the art of CDG, including glycosylation pathways, phenotypes, genotypes, inheritance patterns, biomarkers, disease models, and treatments. In light of our current knowledge, it is not always clear whether a specific disease should be classified as a CDG. This can create ambiguity among professionals leading to confusion and misguidance, consequently affecting the patients and their families. This review aims to provide the CDG community with a comprehensive overview of the recent progress made in this field.publishersversionpublishe

    CDG and immune response: From bedside to bench and back

    No full text
    Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.status: publishe
    corecore