678 research outputs found

    Spectroscopic Constraints on the Surface Magnetic Field of the Accreting Neutron Star EXO 0748-676

    Full text link
    Gravitationally redshifted absorption lines of Fe XXVI, Fe XXV, and O VIII were inferred recently in the X-ray spectrum of the bursting neutron star EXO 0748-676. We place an upper limit on the stellar magnetic field based on the iron lines. The oxygen absorption feature shows a multiple component profile that is consistent with Zeeman splitting in a magnetic field of ~(1-2)x10^9 gauss, and for which the corresponding Zeeman components of the iron lines are expected to be blended together. In other systems, a field strength >5x10^{10} gauss could induce a blueshift of the line centroids that would counteract gravitational redshift and complicate the derivation of constraints on the equation of state of the neutron star.Comment: 5 pages, submitted to Phys. Rev. Let

    Field-Dependent Hall Effect in Single Crystal Heavy Fermion YbAgGe below 1K

    Get PDF
    We report the results of a low temperature (T >= 50 mK) and high field (H <= 180 kOe) study of the Hall resistivity in single crystals of YbAgGe, a heavy fermion compound that demonstrates field-induced non-Fermi-liquid behavior near its field-induced quantum critical point. Distinct features in the anisotropic, field-dependent Hall resistivity sharpen on cooling down and at the base temperature are close to the respective critical fields for the field-induced quantum critical point. The field range of the non-Fermi-liquid region decreases on cooling but remains finite at the base temperature with no indication of its conversion to a point for T -> 0. At the base temperature, the functional form of the field-dependent Hall coefficient is field direction dependent and complex beyond existing simple models thus reflecting the multi-component Fermi surface of the material and its non-trivial modification at the quantum critical point

    Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling

    Full text link
    Recent theoretical studies of topologically nontrivial electronic states in Kondo insulators have pointed to the importance of spin-orbit coupling (SOC) for stabilizing these states. However, systematic experimental studies that tune the SOC parameter λSOC\lambda_{\rm{SOC}} in Kondo insulators remain elusive. The main reason is that variations of (chemical) pressure or doping strongly influence the Kondo coupling JKJ_{\text{K}} and the chemical potential μ\mu -- both essential parameters determining the ground state of the material -- and thus possible λSOC\lambda_{\rm{SOC}} tuning effects have remained unnoticed. Here we present the successful growth of the substitution series Ce3_3Bi4_4(Pt1−x_{1-x}Pdx_x)3_3 (0≤x≤10 \le x \le 1) of the archetypal (noncentrosymmetric) Kondo insulator Ce3_3Bi4_4Pt3_3. The Pt-Pd substitution is isostructural, isoelectronic, and isosize, and therefore likely to leave JKJ_{\text{K}} and μ\mu essentially unchanged. By contrast, the large mass difference between the 5d5d element Pt and the 4d4d element Pd leads to a large difference in λSOC\lambda_{\rm{SOC}}, which thus is the dominating tuning parameter in the series. Surprisingly, with increasing xx (decreasing λSOC\lambda_{\rm{SOC}}), we observe a Kondo insulator to semimetal transition, demonstrating an unprecedented drastic influence of the SOC. The fully substituted end compound Ce3_3Bi4_4Pd3_3 shows thermodynamic signatures of a recently predicted Weyl-Kondo semimetal.Comment: 6 pages, 5 figures plus Supplemental Materia

    Magnetic field-induced quantum critical point in YbPtIn and YbPt0.98_{0.98}In single crystals

    Full text link
    Detailed anisotropic (H∥\parallelab and H∥\parallelc) resistivity and specific heat measurements were performed on online-grown YbPtIn and solution-grown YbPt0.98_{0.98}In single crystals for temperatures down to 0.4 K, and fields up to 140 kG; H∥\parallelab Hall resistivity was also measured on the YbPt0.98_{0.98}In system for the same temperature and field ranges. All these measurements indicate that the small change in stoichiometry between the two compounds drastically affects their ordering temperatures (Tord≈3.4_{ord}\approx3.4 K in YbPtIn, and ∼2.2\sim2.2 K in YbPt0.98_{0.98}In). Furthermore, a field-induced quantum critical point is apparent in each of these heavy fermion systems, with the corresponding critical field values of YbPt0.98_{0.98}In (Hcab^{ab}_c around 35-45 kG and Hcc≈120^{c}_c\approx120 kG) also reduced compared to the analogous values for YbPtIn (Hcab≈60^{ab}_c\approx60 kG and Hcc>140^{c}_c>140 kG

    Thermoelectric transport through strongly correlated quantum dots

    Get PDF
    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, KeK_{\rm e}, to the thermal conductance, the thermopower, SS, and the electrical conductance, GG, of a quantum dot as a function of both temperature, TT, and gate voltage, vg{\rm v}_g, for strong, intermediate and weak Coulomb correlations, UU, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures T1(vg)T_{1}({\rm v}_g) and T2(vg)T_{2}({\rm v}_g) with T1<T2T_{1}< T_{2}. Such sign changes in S(T)S(T) are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.Comment: 21 pages, 12 figures; published versio

    Anisotropic Hall Effect in Single Crystal Heavy Fermion YbAgGe

    Get PDF
    Temperature- and field-dependent Hall effect measurements are reported for YbAgGe, a heavy fermion compound exhibiting a field-induced quantum phase transition, and for two other closely related members of the RAgGe series: a non-magnetic analogue, LuAgGe and a representative, ''good local moment'', magnetic material, TmAgGe. Whereas the temperature dependent Hall coefficient of YbAgGe shows behavior similar to what has been observed in a number of heavy fermion compounds, the low temperature, field-dependent measurements reveal well defined, sudden changes with applied field; in specific for H⊥cH \perp c a clear local maximum that sharpens as temperature is reduced below 2 K and that approaches a value of 45 kOe - a value that has been proposed as the T=0T = 0 quantum critical point. Similar behavior was observed for H∥cH \| c where a clear minimum in the field-dependent Hall resistivity was observed at low temperatures. Although at our base temperatures it is difficult to distinguish between the field-dependent behavior predicted for (i) diffraction off a critical spin density wave or (ii) breakdown in the composite nature of the heavy electron, for both field directions there is a distinct temperature dependence of a feature that can clearly be associated with a field-induced quantum critical point at T=0T = 0 persisting up to at least 2 K.Comment: revised versio

    Optical investigation of the metal-insulator transition in FeSb2FeSb_2

    Full text link
    We present a comprehensive optical study of the narrow gap FeSb2FeSb_2 semiconductor. From the optical reflectivity, measured from the far infrared up to the ultraviolet spectral range, we extract the complete absorption spectrum, represented by the real part σ1(ω)\sigma_1(\omega) of the complex optical conductivity. With decreasing temperature below 80 K, we find a progressive depletion of σ1(ω)\sigma_1(\omega) below Eg∼280E_g\sim 280 cm−1^{-1}, the semiconducting optical gap. The suppressed (Drude) spectral weight within the gap is transferred at energies ω>Eg\omega>E_g and also partially piles up over a continuum of excitations extending in the spectral range between zero and EgE_g. Moreover, the interaction of one phonon mode with this continuum leads to an asymmetric phonon shape. Even though several analogies between FeSb2FeSb_2 and FeSiFeSi were claimed and a Kondo-insulator scenario was also invoked for both systems, our data on FeSb2FeSb_2 differ in several aspects from those of FeSiFeSi. The relevance of our findings with respect to the Kondo insulator description will be addressed.Comment: 17 pages, 5 figure

    Magneto-optical Kerr effect in Eu1−xCaxB6Eu_{1-x}Ca_{x}B_{6}

    Full text link
    We have measured the magneto-optical Kerr rotation of ferromagnetic Eu1−xCaxB6Eu_{1-x}Ca_{x}B_{6} with x=0.2 and 0.4, as well as of YbB6YbB_{6} serving as the non-magnetic reference material. As previously for EuB6EuB_{6}, we could identify a feature at 1 eVeV in the Kerr response which is related with electronic transitions involving the localized 4f electron states. The absence of this feature in the data for YbB6YbB_{6} confirms the relevance of the partially occupied 4f states in shaping the magneto-optical features of EuEu-based hexaborides. Disorder by CaCa-doping broadens the itinerant charge carrier contribution to the magneto-optical spectra

    Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars

    Full text link
    We present first results of a systematic investigation of the incomplete Paschen-Back effect in magnetic Ap stars. A short overview of the theory is followed by a demonstration of how level splittings and component strengths change with magnetic field strength for some lines of special astrophysical interest. Requirements are set out for a code which allows the calculation of full Stokes spectra in the Paschen-Back regime and the behaviour of Stokes I and V profiles of transitions in the multiplet 74 of FeII is discussed in some detail. It is shown that the incomplete Paschen-Back effect can lead to noticeable line shifts which strongly depend on total multiplet strength, magnetic field strength and field direction. Ghost components (which violate the normal selection rule on J) show up in strong magnetic fields but are probably unobservable. Finally it is shown that measurements of the integrated magnetic field modulus HsH_s are not adversely affected by the Paschen-Back effect, and that there is a potential problem in (magnetic) Doppler mapping if lines in the Paschen-Back regime are treated in the Zeeman approximation.Comment: 8 pages, 10 figures, to appear in MNRA
    • …
    corecore