237 research outputs found

    CAMPO, SCR_FIND and CHC_FIND: a suite of web tools for computational structural biology

    Get PDF
    The identification of evolutionarily conserved features of protein structures can provide insights into their functional and structural properties. Three methods have been developed and implemented as WWW tools, CAMPO, SCR_FIND and CHC_FIND, to analyze evolutionarily conserved residues (ECRs), structurally conserved regions (SCRs) and conserved hydrophobic contacts (CHCs) in protein families and superfamilies, on the basis of their 3D structures and the homologous sequences available. The programs identify protein segments that conserve a similar main-chain conformation, compute residue-to-residue hydrophobic contacts involving only apolar atoms common to all the 3D structures analyzed and allow the identification of conserved amino-acid sites among protein structures and their homologous sequences. The programs also allow the visualization of SCRs, CHCs and ECRs directly on the superposed structures and their multiple structural and sequence alignments. Tools and tutorials explaining their usage are available at , and

    Structural properties of the linkers connecting the n- and c- terminal domains in the mocr bacterial transcriptional regulators

    Get PDF
    Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro–Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for β-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties. © 2016 The Author(s

    Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs.</p> <p>Results</p> <p>The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments.</p> <p>Conclusions</p> <p>Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.</p

    PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL

    Get PDF
    Background: In recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users. Results: A simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-] BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models. Conclusions: PyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool. Source code, installation instructions, video tutorials and a user's guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.htm

    La valutazione degli interventi di prossimità. Uno studio pilota

    Get PDF
    Nonostante negli ultimi anni le attività di prevenzione dell’addiction da sostanze e da comportamenti si siano moltiplicate, nella maggior parte dei casi per tali attività, e per gli interventi di prossimità in particolare, non vengono attuati adeguati processi di valutazione. Ciò anche a causa della mancanza di sistemi di valutazione e di modelli teorici di riferimento condivisi. Il presente studio costituisce il primo passo di un progetto di ricerca più ampio finalizzato alla valutazione degli effetti degli interventi di prossimità. Lo studio descrive, in particolare, i rapporti esistenti tra frequenza di assunzione della sostanza o di attuazione del comportamento problematico, stadio del cambiamento e fattori di vulnerabilità e di protezione. Lo studio dimostra, inoltre, che il sistema di valutazione adottato è in grado di rilevare le differenze esistenti tra momenti diversi del percorso di cambiamento, in cui la frequenza di attuazione del comportamento problematico assume significato in relazione a variabili psicologiche e di contesto

    Serine hydroxymethyltransferase: origin of substrate specificity

    Get PDF
    All forms of serine hydroxymethyltransferase, for which a primary structure is known, have five threonine residues near the active-site lysyl residue (K229) that forms the internal aldimine with pyridoxal phosphate. For Escherichia coli serine hydroxymethyltransferase each of these threonine residues has been changed to an alanine residue. The resulting five mutant enzymes were purified and characterized with respect to kinetic and spectral properties. The mutant enzymes T224A and T227A showed no significant changes in kinetic and spectral properties compared to the wild-type enzyme. The T225A and T230A enzymes exhibited differences in K(m) and k(cat) values but exhibited the same spectral properties as the wild-type enzyme. The four threonine residues at positions 224, 225, 227, and 230 do not play a critical role in the mechanism of the enzyme. The T226A enzyme had nearly normal affinity for substrates and coenzymes but had only 3% of the catalytic activity of the wild-type enzyme. The spectrum of the T226A enzyme in the presence of amino acid substrates showed a large absorption maximum at 343 nm with only a small absorption band at 425 nm, unlike the wild-type enzyme whose enzyme-substrate complexes absorb at 425 nm. Rapid reaction studies showed that when amino acid substrates and substrate analogues were added to the T226A enzyme, the internal aldimine absorbing at 422 nm was rapidly converted to a complex absorbing at 343 nm in a second-order process. This was followed by a very slow first-order formation of a complex absorbing at 425 nm. Variation of the initial rapid second-order process as a function of pH suggested that the anionic form of the amino acid forms the first complex with the enzyme. The results are interpreted as being due to the rapid formation of a gem-diamine complex between amino acids and T226A enzyme with a rate-determining formation of the external aldimine. This suggests that Thr-226 plays an important role in converting the gem-diamine complex to the external aldimine complex. Variation of the kinetic constants with amino acid structure suggests that the T226A enzyme distinguishes between substrates and substrate analogues in the formation of the gem-diamine complex

    Sars-cov-2 envelope and membrane proteins: structural differences linked to virus characteristics?

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) is a new viral infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). Genomic analyses have revealed that SARS-CoV-2 is related to Pangolin and Bat coronaviruses. In this report, a structural comparison between the Sars-CoV-2 Envelope and Membrane proteins from different human isolates with homologous proteins from closely related viruses is described. The analyses here reported show the high structural similarity of Envelope and Membrane proteins to the counterparts from Pangolin and Bat coronavirus isolates. However, the comparisons have also highlighted structural differences specific of Sars-CoV-2 proteins which may be correlated to the cross-species transmission and/or to the properties of the virus. Structural modelling has been applied to map the variant sites onto the predicted three-dimensional structure of the Envelope and Membrane proteins

    The primary structure of rabbit liver cytosolic serine hydroxymethyltrasferase

    Get PDF

    Chemogenomics of pyridoxal 5′-phosphate dependent enzymes

    Get PDF
    Pyridoxal 5'-phosphate (PLP) dependent enzymes comprise a large family that plays key roles in amino acid metabolism and are acquiring an increasing interest as drug targets. For the identification of compounds inhibiting PLP-dependent enzymes, a chemogenomics-based approach has been adopted in this work. Chemogenomics exploits the information coded in sequences and three-dimensional structures to define pharmacophore models. The analysis was carried out on a dataset of 65 high-resolution PLP-dependent enzyme structures, including representative members of four-fold types. Evolutionarily conserved residues relevant to coenzyme or substrate binding were identified on the basis of sequence-structure comparisons. A dataset was obtained containing the information on conserved residues at substrate and coenzyme binding site for each representative PLP-dependent enzyme. By linking coenzyme and substrate pharmacophores, bifunctional pharmacophores were generated that will constitute the basis for future development of small inhibitors targeting specific PLP-dependent enzymes
    corecore