138 research outputs found

    ELECTROPHORETIC DISPLAYS WITH TUNABLE, ANGLE-INDEPENDENT COLOR

    Get PDF
    Electrophoretic displays (EPDs), which exploit the surface charge of microparticles to control their deposition, have become widely available in consumer electronics, such as e-readers and smartwatches. However, a full-color EPD has yet to be demonstrated and commercialized. Here, we demonstrate colloidal assemblies of engineered quasi-amorphous photonic materials, using pigmentary α-Fe2O3/SiO2 core/shell nanoparticles, exhibiting non- iridescent tunable colors which can be tuned electrophoretically. The observed colors result from combination of colloidal particle arrangements, giving rise to structural color, along with the inherent pigmentary color of the α-Fe2O3/SiO2 nanoparticles. Colloidal particle assemblies of α-Fe2O3/SiO2 core/shell nanoparticles, and therefore the resulting colors, can be manipulated by shell thickness, particle concentration and external electrical stimuli. Dynamic tunability of α-Fe2O3/SiO2 nanomaterials in the visible wavelengths is demonstrated using reversible electrophoretic deposition with a noticeable difference between transmitted and reflected colors. The distinct contrast generated can be exploited for tunable display applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-704082

    Accessing HE for non-traditional students: 'Outside of my position'

    Get PDF
    Widening participation within higher education and increasing social mobility have been high on the agendas of former and current governments. This paper examines the admissions procedure of a Foundation degree in Early Years programme using Bourdieu's concept of capital as a vehicle for analysis. During the process of an admissions interview, the interviewer is required to make decisions regarding a student's suitability to fit into the existing field of the programme as they often feel it is outside of their position. The stories of three non-traditional students are explored to highlight existing capital and dispositions that they bring to the programme. Research findings showed that there are many variables that impact on a student's ability to gain entry and be successful on an HE programme, including accumulation of capital, emotional drivers and potential to acquire capital throughout the programme. © 2014 Further Education Research Association

    Cyclodextrin Complexes of Reduced Bromonoscapine in Guar Gum Microspheres Enhance Colonic Drug Delivery

    Get PDF
    Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase−solubility analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 103 M−1 and 4.27 × 103 M−1. Fourier transforms infrared spectroscopy indicated entrance of an O−CH2 or OCH3−C6H4−OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β- CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD and methyl-β-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3−C6H4−OCH3 moiety was closer to the H5 proton of β-CD and the H3 proton of the methyl-β-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and methyl-β-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM formulations respectively, compared to free Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer

    Viral Coinfections in Hospitalized Coronavirus Disease 2019 Patients Recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK Study

    Get PDF
    Background: We conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity. Methods: Multiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged <1 year to 102 years old, recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK study. Comprehensive demographic, clinical, and outcome data were collected prospectively up to 28 days post discharge. Results: A coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity. Conclusions: Viral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward

    Northern Gannet foraging trip length increases with colony size and decreases with latitude

    Get PDF
    Density-dependent competition for food influences the foraging behaviour and demography of colonial animals, but how this influence varies across a species’ latitudinal range is poorly understood. Here we used satellite tracking from 21 Northern Gannet Morus bassanus colonies (39% of colonies worldwide, supporting 73% of the global population) during chick-rearing to test how foraging trip characteristics (distance and duration) covary with colony size (138–60 953 breeding pairs) and latitude across 89% of their latitudinal range (46.81–71.23° N). Tracking data for 1118 individuals showed that foraging trip duration and maximum distance both increased with square-root colony size. Foraging effort also varied between years for the same colony, consistent with a link to environmental variability. Trip duration and maximum distance also decreased with latitude, after controlling for colony size. Our results are consistent with density-dependent reduction in prey availability influencing colony size and reveal reduced competition at the poleward range margin. This provides a mechanism for rapid population growth at northern colonies and, therefore, a poleward shift in response to environmental change. Further work is required to understand when and how colonial animals deplete nearby prey, along with the positive and negative effects of social foraging behaviour

    Affecting Rhomboid-3 Function Causes a Dilated Heart in Adult Drosophila

    Get PDF
    Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT) can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF)–like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz–EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest that an evolutionarily conserved signaling mechanism may be necessary to maintain post-developmental cardiac function
    corecore