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Abstract

Studies of the kinetics of electrophoretic deposition (EPD) processes have generally fo-
cused on electrode geometries that yield analytical solutions, such as infinite parallel planes
and concentric cylinders. In this article, we construct a finite element model for EPD of mate-
rial onto a planar strip electrode which shows excellent qualitative agreement to experimental
results in a similar system. Notably, we demonstrate that the presence of the edges of the elec-
trode lead to a singularity in the electric field that significantly effects the morphology of the

deposit at short times or for thin deposits.

Keywords: EPD, finite element analysis, edge effects, colloidal deposition, directed assembly,

numerical modeling

Introduction

Electrophoretic deposition (EPD) is an industrially relevant process '

in which colloidal particles
suspended in a liquid are forced to deposit onto an electrode under an applied electric field. While
EPD was originally developed as a process for painting metals, > it is now recognized as a general
method for depositing material on any conductive surfaces and has found diverse applications in

6,

areas such as thermal barrier coatings,4’5 transparent ceramics, 7 solar cells,®? fuel cells,10-11

12,13 14-18

solid state lighting and displays, and medical implants.

The first theoretical treatment of the deposition kinetics of EPD was performed by Hamaker !°
who predicted that the mass of the deposited film on an unpatterned planar electrode is propor-
tional to the charge passed at the electrodes. Later, Avgustinik, et al. 2 extended Hamaker’s theory
to depositions on concentric cylindrical electrodes. Hamaker’s original analysis assumed that the
concentration of suspended solids is constant. Sarkar and Nicholson?! review and extend the-
ory that relaxes the constant concentration assumption and provide a general expression for the

kinetics that is valid for infinite planar geometries under constant current and constant voltage con-

ditions. Biesheuvel and Verweij?? derive the Hamaker-Avgustinik theory from a general theory of



sedimentation proposed by Kynch,?* while Gonzélez-Cuenca, et al.?*

show that smooth deposits
can only form when the deposit permittivity is lower than the suspension permittivity. Ferrari and
Moreno?’ provide a comprehensive review of EPD kinetics studies.

While it is evident that considerable work has been done to model the EPD process analytically
under various conditions in planar and cylindrical geometries, more complicated geometries have
not generally yielded analytical solutions, but rather have been studied numerically.?%?” One such

experimentally relevant geometry, the planar strip electrode, '3-28-30

seems to have escaped the
attention of the modeling community. A key feature of this geometry, which is absent in the
geometries studied previously, is the presence of electrode edges which we show locally enhance
the electric field and significantly affect the morphology of the deposit. In this article, we use
finite element analysis to develop a model of the electrophoretic deposition of material onto a
metallic strip under potentiostatic conditions in the geometry studied experimentally by Sullivan,

et al. 8%

—a finite width strip electrode opposing a parallel planar electrode. We also provide an
experimental study of such a deposition and show that the model qualitatively captures the key

trends.

Modeling Electrophoretic Deposition onto an Electrode Strip

Let us begin by considering an electrode of width 2W embedded in a insulating substrate separated
from a counter electrode by a distance H (Figure 1a). A suspension of permittivity € and viscosity
7N containing particles at a concentration ¢ is placed between the electrodes. A potential of V),
is applied to the counter electrode while the deposition electrode is grounded. Under the action
of the applied electric field, the particles migrate through the suspension and accumulate at the
deposition electrode forming a deposit. The goal of this work is to model this deposition process
and determine the shape of the deposit as a function of time.

The electrophoretic deposition of particles onto the electrode strip was modeled by formulating

the particle transport equations and solving for the time-dependent concentration profile in a 2D
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Figure 1: (a) Schematic of the model system. The deposition electrode of extent 2W is separated
from a counter electrode by a distance H. The space between the electrode is filled with a sus-
pension containing particles at concentration cy. The charged nanoparticle (red) follows electric
field lines and deposits onto the deposition electrode. (b) Due to the symmetry of the model system
about the center line of the deposition electrode, the computational domain represents half of model
system with the origin fixed at the deposition electrode center and a line of symmetry at X = 0. The
dimension are scaled to the electrode half width and represent those of the experimental system.
The mesh for the finite element solution was constructed such that the mesh density is increased
in the vicinity of the deposition electrode with the highest density near the edge of the electrode.
The electrical boundary conditions are: V =0 (blue); V =1 (green); no current, dav /dn =0 (red).
(c) Schematic of the experimental system (not to scale). A trio of deposition electrodes (250 um
wide, separated by 6 mm center-to-center) face a planar counter electrode across distance of 1 cm.
The suspension is loaded into the cell through the inlet with the cell rotated vertically. During
deposition and subsequent suspension withdrawal, the cell is rotated 90° such that the deposition
electrode is on top of the counter electrode, as depicted.



domain (Figure 1b) under the following assumptions: The suspension is a fixed volume; no fluid
flows into or out of the domain. The suspension is electroneutral at all points and the particles move
through a quiescent fluid. The electric field is not perturbed by the presence of the particles or the
deposit (equivalent to assuming that the deposit and suspension have equivalent permittivities or
conductivities), nor are capacitive or Faradaic currents at the electrode considered. The particles
move through the fluid via interaction with an applied electric field and by diffusion; however,
particle-particle interactions are neglected except for an excluded volume effect that limits maxi-
mum packing and manifests as a volume fraction dependent viscosity. Higher order electrokinetic

32

effects such as dielectrophoresis>! and induced charge electrophoresis>? are not treated. Finally,

all particles are treated as identical and the gravitational forces on the particles are neglected.
Given that the suspension is electroneutral and that the presence of the deposit does not affect

the electric field, the electrostatic potential in the domain is governed by Laplace’s equation:

ViV =0, (1)

where V is the electrostatic potential at a point in the domain and the electric field is

E=-VV. (2)

The electric field is coupled to the total flux of particles in the domain,

J=—DVc+uEc, 3)

where c is the concentration of particles, D and u are their diffusivity and electrophoretic mobility,
respectively. The first term on the RHS of (3) represents the diffusion of particles in the suspension,

while the second term represents electrophoresis of the particles. The number of particles in the



domain is conserved; thus, the concentration evolves with respect to time according to:

a9

- _V.j
dr J

= V- (DV¢+ouvv), 4)

where we have written the concentration more conveniently in terms of the volume fraction, ¢ =
Vyc, where V), is the volume occupied per particle. Additionally, (2) has been used to show explicit
coupling of the concentration field to the electrostatics. While (4) resembles the Nernst-Planck
equation for ion transport in electrolytes, the mobility of the particles here is the electrophoretic
mobility and is not given by the Stokes-Einstein relation. The electrophoretic particle mobility
is determined by solving for the electrokinetic flow around the particle, the details of which are
presented elsewhere.> While a general relation for the mobility was provided by Henry, we will
restrict ourselves to the thick double layer regime of Hiickel** for simplicity and to more closely

match the experimental conditions:
2el
— > 5
H== ' &)
where { is the zeta potential of the particles and 1) the suspension viscosity.
Since each particle occupies a finite volume in the suspension, there is a maximum volume

fraction, @pax = @rcp = 0.64 assuming a randomly closed packed deposit,* which cannot be ex-

ceeded. This constraint is enforced by assuming a Mooney-type® dependence of viscosity on

N o220
No - (1 _¢/¢max) , ©

volume fraction:

where 1) is the pure solvent viscosity. Thus,

u—0as ¢ — G-

In order to allow for the comparison of scales between terms in governing equations (1) & (4)

and for ease of solution, the problem was non-dimensionalized by choosing characteristic scales



such that:

V - V/Vapp7 (7N
‘ﬁ - ‘p/(l)mwm
V = WV,

~5

= t/t.,

where 7. is a characteristic time scale, of which two emerge from non-dimensionalization: ¢, =
W?/D and t, = W?/ UVapp. The former is the characteristic time scale for a particle to diffuse
across the electrode, while the latter represents the characteristic time of a particle to convect a
distance W by electrophoresis. Since electrophoretic motion dominates in the experimental system,
the latter time scale is chosen and ¢z, = 2.0 seconds for the experimental conditions. This leads to

the following set of governing equations for the system:

ViV = 0, (8)
do R . b\ Lo
? = V- {PeIV(]) +exp (_2-5¢maxLA> (PVV} ’ (9)
dt I—-¢
where Pe = W is the Péclet number and the diffusivity of the particle has been related to

particle diameter, d, via the Stokes-Einstein relation:

_ kgT
- 3rnod

Note that the viscosity employed in Stokes-Einstein relation is the pure solvent viscosity, 1Mo, and
is not volume fraction dependent. This choice is necessary to maintain numerical stability in
the finite element solver. While undoubtedly the diffusivity of a particle will decrease at high
volume fractions, the error in assuming that the diffusivity is volume fraction independent will be
most pronounced at low values of the Péclet number where diffusion is most important. For the

simulations presented here Pe = 1000, so this assumption is justified.
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Performing the simulations

Due to the symmetry of the system, the computational domain consisted of half of the model
domain with the computation origin placed at the center of the deposition electrode (Figure 1b).
The aspect ratio of the experimental cell was preserved resulting in a domain that is 80 x 80. In this
domain, the boundary conditions on the governing equations are given by: V = 0 at the deposition
electrode surface, V = 1 at the counter electrode surface, and dV /dn at other surfaces and the
plane of symmetry, where 7 is the direction normal to the surface. The boundary condition on the
concentration is no flux of material at all boundaries and at the plane of symmetry. While the initial
condition is that ¢ = ¢y at all points in the domain.

The governing equations (8) & (9) were solved using commercial finite element software
(ComsoL, v4.2). The initial mesh was constructed of ~ 61000 triangular elements such that
the mesh density is increased in the vicinity of the deposition electrode with the highest density
near the edge of the electrode in order to capture the singularity in the electric field that occurs
there. Adaptive mesh refinement was utilized over the course of the simulation to increase mesh
density near large gradients in volume fraction. The solution to (8) was found using the built-in
electrostatics module, while (9) was implemented as a generic PDE. Time stepping was performed
using the BDF method with a MUMPS solver.

Stable solutions to the governing equations were found up to Pe = 1000 for the experimental
initial condition ¢§0 = 3.125 x 1073, The solution did not converge for Pe > 1000. Thus, it was not
possible to quantitatively simulate the experiments which were performed at Pe ~ 64000; however,
qualitative comparisons can be made.

The simulations were performed with a temporal resolution of A7 = 1 for 7 between 0 and 1000.
By 7 = 1000, the total depletion of the suspension was ~ 5% which approximately corresponds to
that of the experiments. The simulations were continued at a lower temporal resolution of A7 = 10

for 7 between 1000 and 5000 in order to observe the long term evolution of the deposit.



Experimental Methods

Suspension Preparation

A suspension containing 0.063 vol% CuO nanoparticles (Sigma-Aldrich, aggregates approximately
100 nm in diameter) and 0.137 vol% Al nanoparticles (Novacentrix, 80 nm) for a total 0.2 vol%
solids was suspended in a 3:1 by volume ethanol:deionized water mixture by first suspending the
particles in absolute ethanol (Pharmco-Aaper) and sonicating with an ultrasonic wand for 1 minute
(50% duty cycle). The DI water (Milli-Q, Millipore) was then added to the suspension and it was
again sonicated with an ultrasonic wand for 1 minute (50% duty cycle). The zeta potential of the
suspended particles was measured with a ZetaSizer Nano ZS90 (Malvern) and yielded a single

broad peak at 32 + 14 mV.

Electrophoretic Deposition

Depositions were carried out in a custom built flow chamber that consists of a chamber of dimen-
sions 2 x 2 x 1 cm with 1/16" ID inlet and outlet ports (Figure 1c). The cell is assembled such that
the deposition electrode and counter electrode are separated by 1 cm. The deposition electrode
consists of a trio of 250 um wide photolithographically patterned Pt strips separated by 6 mm
center-to-center on a glass microscope slide and 20 mm in length (L), while the counter electrode
is a 2 x 2 cm unpatterned silicon wafer sputtered with a Pt-Cr thin film. The flow chamber was
filled in a vertical orientation at 10 mL/min with the freshly made suspension using a syringe pump
(PHD ultra, Harvard Apparatus) connected to the inlet. The flow was continued until the suspen-
sion was seen exiting through the outlet, indicating that the chamber was full. The flow chamber
was then rotated such that the deposition electrode was above the counter electrode (Figure 1c¢).
The depositions were carried out with the electrodes oriented horizontally under potentiostatic
conditions by applying a constant 40 Vpc across the electrodes for a specified amount of time
ranging from 5 to 180 seconds (f = 2.5 to 90). After the deposition was complete, the electric

field was turned off and the remaining suspension was withdrawn at 2 mL/min through the inlet



port to prevent disturbing the deposited film. The chamber was then disassembled and the EPD
film was allowed to dry under ambient conditions. The cross-sectional profile of the deposits was

determined by laser profilometry (Optimet ConoScan 3000, Optical Metrology, Ltd.) (Figure 3b).

Results and Discussion
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Figure 2: (a) The electric field in the vicinity of the deposition electrode. The color represents

electric field at the edge of the electrode (X = 1) is clearly evident. (b) The concentration field of
particles at f = 75 for Pe = 1000. Note, that the presence of the electric field singularity leads to
a high particle flux near the edge of the electrode leading to a deposit that is thicker near the edge
than in the center at short times.

As evident in Figure 2a, a singularity in the electric field occurs at the edge of the electrode.
This is a general feature found any place where there is a spatial discontinuity in the electrical
boundary conditions, such as at the edge of the electrode where the boundary condition goes from
¢=0todd /dn = 0. The singularity has a profound effect on the structure of the deposit, par-
ticularly at short times. Since the flux of particles is proportional to the electric field (3), a high
flux of particles initially occurs in the vicinity of the edge. This causes the film to grow the fastest
near the edge which results the maximum height of the deposit occurring near the edge ("wings").

This behavior is captured in both the simulated deposits (Figure 3a) as well as the experimental
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Figure 3: (a) The cross-sectional profile of the deposit from simulations for Pe = 1000 for 7 =
50 (black), 100 (red), 200 (green), 400 (blue), 600 (cyan), 1000 (purple), 2000 (orange). The
surface of the deposit was chosen to coincide with the ¢ = 0.75 contour. Numerical artifacts in
the solution are evident as ripples on the simulated deposit surface at large times and are caused
by the decreased mesh density in that area. Note that the simulations results have been reflected
across X = 0 in order to more closely resemble the experimental cross-sections. (b) The mean
experimental cross-sectional profile of the deposit at Pe = 64000 determined by averaging the
profile at 5 locations along the strip length for 7 = 2.5 (black), 10 (red), 15 (green), 20 (blue), 36.5
(cyan), 60 (purple), 90 (orange) as determined by laser profilometry.
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(Figure 3b) (Note that for this analysis, we have defined the ¢ = 0.75 contour as the surface of the
simulated deposit). At longer times, the growing film front advances away from the singularity,
the particle flux at the electrode edge decreases compared to the flux at the electrode center line,
and the position of the maximum height shifts from the edge of the electrode to the center line. As
noted by Deconinck,?” similar behavior is seen in electroplating processes near electrode edges,
except since the free surface of the deposit is conductive, the wings continue to grow. Figure 4a
shows the position of the maximal height of the deposit along £ axis which reflects this behavior.
It also reveals excellent qualitative agreement between the simulated and experimental evolution
of the shape of the deposit. Far from the deposition electrode, the electric field approximates the
field between a plate and a point charge, and the deposit begins to grow isotropically into a semi-
circular shape. A video of the deposition process up to 7 = 1000 is provided in the supplemental
information.

In addition to the film growing vertically from the deposition electrode, it also grows laterally
away from the electrode edge and covers part of the insulating region adjacent to the electrode.
The reason for this lateral growth is apparent from the electric field shown in Figure 2a: The
boundary condition on the insulating surface requires that there be only a tangential component to
the electric field near the surface. Since the flux of particles follows electric field lines, particles
that reside close to the electrode surface are forced horizontally along the insulating surface until
they encounter the growing film front. Figure 4b plots the aspect ratio of the film, here defined
as the height of the deposit at the electrode centerline to the half of the lateral extent. After some
induction period, during which time the deposit does not cover the entire electrode, the aspect
ratio initially increases rapidly as the deposit grows in height faster than it grows in width. At
longer times, the aspect ratio tends to level off representing an isotropic growth mode. Again,
there is excellent qualitative agreement between simulations and the experimentally determined
aspect ratio.

The dimensionless mass of the deposited film per unit length as a function of time can be

12
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Figure 4: (a) The X position of the maximum thickness of the deposit (X;,,x) versus deposition
time. Initially, the deposit is thickest at the electrode edge (£ = 1) due to the electric field singu-
larity occurring there. At later times, the thickest part of the deposit moves toward the electrode
centerline (X = 0) since, away from the singularity, the highest particle flux occurs along the cen-
terline. (b) The deposit aspect ratio as defined as the ratio of the maximum height of the deposit to
half of the maximum width versus deposition time. Initially, the deposit grows faster vertically than
horizontally, but after some time, the aspect ratio approaches a constant value reflecting isotropic
growth. (c) The scaled mass per unit length (s7) of the deposit versus deposition time, which is
calculated from the simulations as the integrated volume fraction between the ¢ = 0.75 and the
electrode surface given by (10). The dashed line represents a linear fit to the simulation data for
f = 600 — 1000. Experimental points (e) follow the lower axis while simulated depositions (solid
line) follow the upper.
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extracted from the model by integrating the volume fraction contained within the film:
= / $dA. (10)

This is plotted in Figure 4c along with the experimentally determined scaled mass per unit length.
The experimental mass per unit length was determined by dividing the mass of the deposited
film by the characteristic mass scale, m, = np ¢maxW2L, where n = 3 is the number of identical
strips per substrate and p = 4.6 g/cm? is the density of a fully dense deposit as calculated from
elemental composition via ICP-OES.?® At longer times, the simulation curve is well fit by 7 =
—0.425+0.001537 (R?> = 0.999, dashed line in Figure 4c). The linear dependence of mass on time
can be justified because at long times, the electric field at the surface of the deposit is approximated
by the field around a point charge located at the origin, and thus the flux of material, which is
proportional to the electric field, goes like () !, while the surface area of the deposit goes like
r(t), where r(t) is the distance from the center of the electrode to the film surface.

It should be noted that there are three growth regimes; however, only the first two are captured
in these simulations. At early times, which occurs when r(¢) < W, deposit growth is dominated
by the electric field singularity at the edges of the electrode, while at intermediate times when
W < r(t) < H, isotropic growth occurs because the structure of the electric field at the deposit
surface approaches that of a point charge at the origin. When r(¢) ~ H, a regime that is not
explored in this work, the electric field near the deposit surface appears like that of a dipole with

one pole at the center of the electrode and the opposing pole at 2H.

Conclusions

In this work, we have shown that the morphology of an electrophoretically deposited film on a
strip electrode is dominated at short times by the intense electric field at the electrode edges which
results in a deposit with wings near the edges. These intense electric fields occur any time there is

an abrupt change in electrostatic boundary conditions, such as occurs at the edge of an electrode.
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Thus, deposits of nonuniform thickness should be expected to occur in general in such cases. Over
time, as the depositing front moves away from the electrode surface, the influence of the electric
field singularity at the edge lessens, the deposit wings disappear, and the deposit tends to grow in
a more isotropic manner.

While the simulation was unable to attain the correspondingly high Péclet number encountered
in the experiment, the simulations at Pe = 1000 show excellent qualitative agreement with experi-
ment. This provides confidence that relevant and reasonable physics are included in the simulation
and allow us to conclude that a key feature of EPD on electrodes that have edges or corners will
be a singularity of the electric field near the edge that will initially lead to a thicker deposit in that
region. However, additional physics may also be required to correctly model deposition over a
wider range of experimental conditions. Perhaps the most relevant physics that we have neglected
here is to allow for a voltage drop across the deposit. Several authors, going back to Hamaker
himself, 1%-21:22.24 have invoked this to explain trends in deposited mass versus time. In the future,
we hope to resolve the high Péclet number model convergence issues and demonstrate the ability

to quantitatively predict the deposition kinetics for a wide range of experimental conditions.

Acknowledgments

A.J.P. would like to thank Todd Weisgraber for helpful discussions. This work was funded by the
Laboratory Directed Research and Development Strategic Initiative program 11-SI-005 "Disrup-
tive Fabrication Technologies Initiative" and performed under the auspices of the US Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-JRNL-560451.

Supporting Information

A video of the simulation at Pe = 1000 for 7 = 0 — 1000. Mesh refinement occurs every 100
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