34 research outputs found

    Pathogens, microbiome and the host: emergence of the ecological Koch's postulates

    Get PDF
    International audienceEven though tremendous progress has been made in the last decades to elucidate the mechanisms of intestinal homeostasis, dysbiosis and disease, we are only at the beginning of understanding the complexity of the gut ecosystem and the underlying interaction networks. We are also only starting to unravel the mechanisms that pathogens have evolved to overcome the barriers imposed by the microbiota and host to exploit the system to their own benefit. Recent work in these domains clearly indicates that the 'traditional Koch's postulates', which state that a given pathogen leads to a distinct disease, are not valid for all 'infectious' diseases, but that a more complete and complex interpretation of Koch's postulates is needed in order to understand and explain them. This review summarises the current understanding of what defines a healthy gut ecosystem and highlights recent progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens. Based on these recent findings, we propose a new interpretation of Koch's postulates that we term 'ecological Koch's postulates'

    Systematic review and meta-analysis of integrated studies on antimicrobial resistance genes in Africa-A One Health perspective

    Get PDF
    Background Increasing antimicrobial resistance (AMR) raises serious health and financial concerns. However, the main drivers of the emergence, spread and subsequent colonisation of resistant bacterial strains between humans, animals and the environment are still poorly understood. Objective The aim of this review was to identify molecular studies on AMR in One Health settings in Africa and to determine the prevalence of antimicrobial resistance genes in humans, animals and the environment. Due to the very low number of studies including environmental samples, the meta-analysis only includes data obtained from animals and humans. Methods The PubMed, Web of Science and Scopus databases were searched, identifying 10 464 publications on AMR in Africa from January 1st, 2000 until June 1st, 2020. Inclusion criteria were: (i) Integrated studies assessing AMR simultaneously in an animal-human, animal-environment, human-environment or animal-human-environment context, (ii) Genotypic characterisation of AMR and (iii) temporal and spatial relationship between samples from humans and animals. Statistical random-effects model meta-analysis was performed. Results Overall, 18 studies met our eligibility criteria and were included in this review. Six studies investigated Escherichia coli and Salmonella spp. (N = 6). The most prevalent AMR genes in animals included sul1 (36.2%), sul2 (32.0%), tetA (31.5%), strB (30.8%) and blaTEM (30.0%), whereas sul2 (42.4%), tetA (42.0%), strB (34.9%), blaTEM (28.8%) and sul1 (27.8%) were most prevalent in humans. We observed no clear pattern for a higher prevalence in either the animal or the human reservoir. Conclusion To date, data on AMR in a One Health perspective in Africa are scarce. Prospective and longitudinal studies using an integrated One Health approach assessing the environment, animals and humans at the same time are needed to better understand the main drivers of AMR sharing in Africa.ISSN:1360-2276ISSN:1365-315

    Gut microbiomes of agropastoral children from the Adadle region of Ethiopia reflect their unique dietary habits

    No full text
    The composition and function of the intestinal microbiota are major determinants of human health and are strongly influenced by diet, antibiotic treatment, lifestyle and geography. Nevertheless, we currently have only little data on microbiomes of non-westernized communities. We assess the stool microbiota composition in 59 children aged 2–5 years from the Adadle district of Ethiopia, Somali Regional State. Here, milk and starch-rich food are predominant components of the local diet, where the inhabitants live a remote, traditional agropastoral lifestyle. Microbiota composition, function and the resistome were characterized by both 16S rRNA gene amplicon and shotgun metagenomic sequencing and compared to 1471 publicly available datasets from children living in traditional, transitional, and industrial communities with different subsistence strategies. Samples from the Adadle district are low in Bacteroidaceae, and Prevotellaceae, the main bacterial representatives in the feces of children living in industrialized and non-industrialized communities, respectively. In contrast, they had a higher relative abundance in Streptococcaceae, Bifidobacteriaceae and Erysipelatoclostridiaceae. Further, genes involved in degradation pathways of lactose, d-galactose and simple carbohydrates were enriched. Overall, our study revealed a unique composition of the fecal microbiota of these agropastoral children, highlighting the need to further characterize the fecal bacterial composition of human populations living different lifestyles.ISSN:2045-232

    A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia

    Get PDF
    INTRODUCTION: Microbial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting via Matrix-assisted Laser Desorption Ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria. METHODS: We constructed a database containing mass spectral profiles (MSP) from 142 bacterial strains representing 47 species and 21 genera within the class Clostridia. Each strain-specific MSP was constructed using >20 raw spectra measured on a microflex Biotyper system (Bruker-Daltonics) from two independent cultures. RESULTS: For validation, we used 58 sequence-confirmed strains and the CLOSTRI-TOF database successfully identified 98 and 93% of the strains, respectively, in two independent laboratories. Next, we applied the database to 326 isolates from stool of healthy Swiss volunteers and identified 264 (82%) of all isolates (compared to 170 (52.1%) with the Bruker-Daltonics library alone), thus classifying 60% of the formerly unknown isolates. DISCUSSION: We describe a new open-source MSP database for fast and accurate identification of the Clostridia class from the human gut microbiota. CLOSTRI-TOF expands the number of species which can be rapidly identified by MALDI-TOF MS

    High prevalence of intestinal parasite infestations among stunted and control children aged 2 to 5 years old in two neighborhoods of Antananarivo, Madagascar

    No full text
    International audienceBackgroundThis study aimed to compare the prevalence of intestinal parasite infestations (IPIs) in stunted children, compared to control children, in Ankasina and Andranomanalina Isotry (two disadvantaged neighborhoods of Antananarivo, Madagascar), to characterize associated risk factors and to compare IPI detection by real-time PCR and standard microscopy techniques.Methodology/Principal findingsFecal samples were collected from a total of 410 children (171 stunted and 239 control) aged 2–5 years. A single stool sample per subject was examined by simple merthiolate-iodine-formaldehyde (MIF), Kato-Katz smear and real-time PCR techniques. A total of 96.3% of the children were infested with at least one intestinal parasite. The most prevalent parasites were Giardia intestinalis (79.5%), Ascaris lumbricoides (68.3%) and Trichuris trichiura (68.0%). For all parasites studied, real-time PCR showed higher detection rates compared to microscopy ( G . intestinalis [77.6% (n = 318) versus 20.9% (n = 86)], Entamoeba histolytica [15.8% (n = 65) versus 1.9% (n = 8)] and A . lumbricoides [64.1% (n = 263) versus 50.7% (n = 208)]). Among the different variables assessed in the study, age of 4 to 5 years (AOR = 4.61; 95% CI, (1.35–15.77)) and primary and secondary educational level of the mother (AOR = 12.59; 95% CI, (2.76–57.47); AOR = 9.17; 95% CI, (2.12–39.71), respectively) were significantly associated with IPIs. Children drinking untreated water was associated with infestation with G . intestinalis (AOR = 1.85; 95% CI, (1.1–3.09)) and E . histolytica (AOR = 1.9; 95% CI, (1.07–3.38)). E . histolytica was also associated with moderately stunted children (AOR = 0.37; 95% CI, 0.2–0.71). Similarly, children aged between 4 and 5 years (AOR = 3.2; 95% CI (2.04–5.01)) and living on noncemented soil types (AOR = 1.85; 95% CI, (1.18–2.09)) were associated with T . trichiura infestation.Conclusions/SignificanceThe prevalence of IPIs is substantial in the studied areas in both stunted and control children, despite the large-scale drug administration of antiparasitic drugs in the country. This high prevalence of IPIs warrants further investigation. Improved health education, environmental sanitation and quality of water sources should be provided

    High prevalence of small intestine bacteria overgrowth and asymptomatic carriage of enteric pathogens in stunted children in Antananarivo, Madagascar

    No full text
    International audienceEnvironmental Enteric Dysfunction (EED) refers to an incompletely defined syndrome of inflammation, reduced absorptive capacity, and reduced barrier function in the small intestine. It is widespread among children and adults in low- and middle-income countries and is also associated with poor sanitation and certain gut infections possibly resulting in an abnormal gut microbiota, small intestinal bacterial overgrowth (SIBO) and stunting. We investigated bacterial pathogen exposure in stunted and non-stunted children in Antananarivo, Madagascar by collecting fecal samples from 464 children (96 severely stunted, 104 moderately stunted and 264 non-stunted) and the prevalence of SIBO in 109 duodenal aspirates from stunted children (61 from severely stunted and 48 from moderately stunted children). SIBO assessed by both aerobic and anaerobic plating techniques was very high: 85.3% when selecting a threshold of ≄10 5 CFU/ml of bacteria in the upper intestinal aspirates. Moreover, 58.7% of the children showed more than 10 6 bacteria/ml in these aspirates. The most prevalent cultivated genera recovered were Streptococcus , Neisseria , Staphylococcus , Rothia , Haemophilus , Pantoea and Branhamella . Feces screening by qPCR showed a high prevalence of bacterial enteropathogens, especially those categorized as being enteroinvasive or causing mucosal disruption, such as Shigella spp., enterotoxigenic Escherichia coli , enteropathogenic E . coli and enteroaggregative E . coli . These pathogens were detected at a similar rate in stunted children and controls, all showing no sign of severe diarrhea the day of inclusion but both living in a highly contaminated environment (slum-dwelling). Interestingly Shigella spp. was the most prevalent enteropathogen found in this study (83.3%) without overrepresentation in stunted children

    Immunoglobulin recognition of fecal bacteria in stunted and non-stunted children: findings from the Afribiota study

    Get PDF
    Background Child undernutrition is a global health issue that is associated with poor sanitation and an altered intestinal microbiota. Immunoglobulin (Ig) A mediates host-microbial homeostasis in the intestine, and acutely undernourished children have been shown to have altered IgA recognition of the fecal microbiota. We sought to determine whether chronic undernutrition (stunting) or intestinal inflammation were associated with antibody recognition of the microbiota using two geographically distinct populations from the Afribiota project. Fecal bacteria from 200 children between 2 and 5 years old in Antananarivo, Madagascar, and Bangui, Central African Republic (CAR), were sorted into IgA-positive (IgA+) and IgA-negative (IgA−) populations by flow cytometry and subsequently characterized by 16S rRNA gene sequencing to determine IgA-bacterial targeting. We additionally measured IgG+ fecal bacteria by flow cytometry in a subset of 75 children. Results Stunted children (height-for-age z-score ≀ −2) had a greater proportion of IgA+ bacteria in the fecal microbiota compared to non-stunted controls. This trend was consistent in both countries, despite the higher overall IgA-targeting of the microbiota in Madagascar, but lost significance in each country individually. Two of the most highly IgA-recognized bacteria regardless of nutritional status were Campylobacter (in CAR) and Haemophilus (in both countries), both of which were previously shown to be more abundant in stunted children; however, there was no association between IgA-targeting of these bacteria and either stunting or inflammatory markers. IgG-bound intestinal bacteria were rare in both stunted and non-stunted children, similar to levels observed in healthy populations. Conclusions Undernourished children carry a high load of intestinal pathogens and pathobionts. Our data suggest that stunted children have a greater proportion of IgA-recognized fecal bacteria. We moreover identify two putative pathobionts, Haemophilus and Campylobacter, that are broadly targeted by intestinal IgA. This study furthers our understanding of host-microbiota interactions in undernutrition and identifies immune-recognized microbes for future study.Medicine, Faculty ofScience, Faculty ofNon UBCBiochemistry and Molecular Biology, Department ofMicrobiology and Immunology, Department ofPopulation and Public Health (SPPH), School ofReviewedFacult

    Changes in Systemic Regulatory T Cells, Effector T Cells, and Monocyte Populations Associated With Early-Life Stunting

    No full text
    International audienceStunting and environmental enteric dysfunction (EED) may be responsible for altered gut and systemic immune responses. However, their impact on circulating immune cell populations remains poorly characterized during early life. A detailed flow cytometry analysis of major systemic immune cell populations in 53 stunted and 52 non-stunted (2 to 5 years old) children living in Antananarivo (Madagascar) was performed. Compared to age-matched non-stunted controls, stunted children aged 2-3 years old had a significantly lower relative proportion of classical monocytes. No significant associations were found between stunting and the percentages of effector T helper cell populations (Th1, Th2, Th17, Th1Th17, and cTfh). However, we found that HLA-DR expression (MFI) on all memory CD4+ or CD8+ T cell subsets was significantly lower in stunted children compared to non-stunted controls. Interestingly, in stunted children compared to the same age-matched non-stunted controls, we observed statistically significant age-specific differences in regulatory T cells (Treg) subsets. Indeed, in 2- to 3-year-old stunted children, a significantly higher percentage of memory Treg, whilst a significantly lower percentage of naive Treg, was found. Our results revealed that both innate and adaptive systemic cell percentages, as well as activation status, were impacted in an age-related manner during stunting. Our study provides valuable insights into the understanding of systemic immune system changes in stunted children

    Factors Associated with Carriage of Enteropathogenic and Non-Enteropathogenic Viruses: A Reanalysis of Matched Case-Control Data from the AFRIBIOTA Site in Antananarivo, Madagascar

    No full text
    International audienceEnvironmental Enteric Dysfunction (EED) is an associate driver of stunting in poor settings, and intestinal infections indirectly contribute to the pathophysiology underlying EED. Our work aimed at assessing whether enteric viral carriage is determinant to stunting. A total of 464 healthy and asymptomatic children, aged 2 to 5 years, were recruited, and classified as non-stunted, moderately stunted, or severely stunted. Among the recruited children, 329 stool samples were obtained and screened for enteric and non-enteric viruses by real-time polymerase chain reaction. We statistically tested for the associations between enteric viral and potential risk factors. Approximately 51.7% of the stool samples were positive for at least one virus and 40.7% were positive for non-enteric adenoviruses. No statistical difference was observed between virus prevalence and the growth status of the children. We did not find any statistically significant association between viral infection and most of the socio-demographic risk factors studied, except for having an inadequate food quality score or an over-nourished mother. In addition, being positive for Ascaris lumbricoides was identified as a protective factor against viral infection. In conclusion, we did not find evidence of a direct link between stunting and enteropathogenic viral carriage in our population
    corecore