4,031 research outputs found
Chicken BAFF
Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells
Intermediary Organisations and the Hegemonisation of Social Entrepreneurship: Fantasmatic Articulations, Constitutive Quiescences, and Moments of Indeterminacy
The rapid rise of alternative organisations such as social enterprises is largely due to the promotional activities of intermediary organisations. So far, little is known about the affective nature of such activities. The present article thus investigates how intermediary organisations make social entrepreneurship palatable for a broader audience by establishing it as an object of desire. Drawing on affect-oriented extensions of Laclau and Mouffe's poststructuralist theory, hegemonisation is suggested as a way of understanding how social entrepreneurship is articulated through a complementary process of signification and affective investment. Specifically, by examining Austrian intermediaries, we show how social entrepreneurship is endowed with a sense of affective thrust that is based on three interlocking dynamics: the articulation of fantasies such as 'inclusive exclusiveness', 'large-scale social change' and 'pragmatic solutions'; the repression of anxiety-provoking and contentious issues (constitutive quiescences); as well as the use of conceptually vague, floating signifiers (moments of indeterminacy). Demonstrating that the hegemonisation of social entrepreneurship involves articulating certain issues whilst, at the same time, omitting others, or rendering them elusive, the article invites a counter-hegemonic critique of social entrepreneurship, and, on a more general level, of alternative forms of organising, that embraces affect as a driving force of change, while simultaneously affirming the impossibility of harmony and wholeness
Chicken BAFF—a highly conserved cytokine that mediates B cell survival
Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell‐surface receptors TACI, BCMA and BAFF‐R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cell
Unique and conserved functions of B cell-activating factor of the TNF family (BAFF) in the chicken
The chicken represents the best-characterized animal model for B cell development in the so-called gut-associated lymphoid tissue (GALT) and the molecular processes leading to B cell receptor diversification in this species are well investigated. However, the mechanisms regulating B cell development and homeostasis in GALT species are largely unknown. Here we investigate the role played by the avian homologue of B cell-activating factor of the tumor necrosis factor family (BAFF). Flow cytometric analysis showed that the receptor for chicken B cell-activating factor of the tumor necrosis factor family (chBAFF) is expressed by mature and immature B cells. Unlike murine and human BAFF, chBAFF is primarily produced by B cells both in peripheral lymphoid organs and in the bursa of Fabricius, the chicken's unique primary lymphoid organ. In vitro and in vivo studies revealed that chBAFF is required for mature B cell survival. In addition, in vivo neutralization with a decoy receptor led to a reduction of the size and number of B cell follicles in the bursa, demonstrating that, in contrast to humans and mice, in chickens BAFF is also required for the development of immature B cells. Collectively, we show that chBAFF has phylogenetically conserved functions in mature B cell homeostasis but displays unique and thus far unknown properties in the regulation of B cell development in bird
Discordant Increases in CD4+ T Cells in Human Immunodeficiency Virus-Infected Patients Experiencing Virologic Treatment Failure: Role of Changes in Thymic Output and T Cell Death
Some patients infected with human immunodeficiency virus (HIV) who are experiencing antiretroviral treatment failure have persistent improvement in CD4+ T cell counts despite high plasma viremia. To explore the mechanisms responsible for this phenomenon, 2 parameters influencing the dynamics of CD4+ T cells were evaluated: death of mature CD4+ T cells and replenishment of the CD4+ T cell pool by the thymus. The improvement in CD4+ T cells observed in patients with treatment failure was not correlated with spontaneous, Fas ligand-induced, or activation-induced T cell death. In contrast, a significant correlation between the improvement in CD4+ T cell counts and thymic output, as assessed by measurement of T cell receptor excision circles, was observed. These observations suggest that increased thymic output contributes to the dissociation between CD4+ T cell counts and viremia in patients failing antiretroviral therapy and support a model in which drug-resistant HIV strains may have reduced replication rates and pathogenicity in the thymu
TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts.
The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons
Distribution of artifactual gas on post-mortem multidetector computed tomography (MDCT)
Purpose: We investigated the incidence and distribution of post-mortem gas detected with multidetector computed tomography (MDCT) to identify factors that could distinguish artifactual gas from cardiac air embolism. Material and methods: MDCT data of 119 cadavers were retrospectively examined. Gas was semiquantitatively assessed in selected blood vessels, organs, and body spaces (82 total sites). Results: Seventy-four of the 119 cadavers displayed gas (62.2%; CI 95% 52.8-70.9), and 56 (75.7%) displayed gas in the heart. Most gas was detected in the hepatic parenchyma (40%), right heart (38% ventricle, 35% atrium), inferior vena cava (30% infrarenally, 26% suprarenally), hepatic veins (26% left, 29% middle, 22% right), and portal spaces (29%). Male cadavers displayed gas more frequently than female cadavers. Gas was detected 5-84 hours after death; therefore, the post-mortem interval could not reliably predict gas distribution (rho = 0.719, p < 0.0001). We found that a large amount of putrefaction-generated gas in the right heart was associated with aggregated gas bubbles in the hepatic parenchyma (sensitivity = 100%, specificity = 89.7%). In contrast, gas in the left heart (sensitivity = 41.7%, specificity = 100%) or in periumbilical subcutaneous tissues (sensitivity = 50%, specificity = 96.3%) could not predict gas due to putrefaction. Conclusion: This study is the first to show that the appearance of post-mortem gas follows a specific distribution pattern. An association between intracardiac gas and hepatic parenchymal gas could distinguish between post-mortem-generated gas and vital air embolism. We propose that this finding provides a key for diagnosing death due to cardiac air embolis
BAFF production by antigen‐presenting cells provides T cell co‐stimulation
The B cell‐activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co‐stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co‐stimulatory function. BAFF is produced by antigen‐presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up‐regulates BAFF production in these cells. A low level of BAFF transcription, up‐regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the AP
- …
