285 research outputs found

    Application of a mechanistic UV/hydrogen peroxide model at full-scale : sensitivity analysis, calibration and performance evaluation

    Get PDF
    Numerous mechanistic models describing the UV/H2O2 process have been proposed in literature. In this study, one of them was used to predict the behavior of a full-scale reactor. The model was calibrated and validated with non-synthetic influent using different operational conditions. A local sensitivity analysis was conducted to determine the most important operational and chemical model parameters. Based on the latter, the incident UV irradiation intensity and two kinetic rate constants were selected for mathematical estimation. Hydrogen peroxide concentration, the decadic absorption coefficient at 310 nm (UVA310, as a surrogate for natural organic matter) and pH could be satisfactorily predicted during model validation using an independent data set. It was demonstrated that quick real-time calibration is an option at less controllable full-scale conditions. Parameters that determine the initiation step, i.e. photolysis of hydrogen peroxide, have a large impact on most of the variables. Some reaction rate constants were also of importance, but nine kinetic constants did show absolutely no influence to one of the variables. Parameters related to UV shielding by NOM were of main importance. Hydrogen peroxide concentration was classified as a non-sensitive variable, in contrast to the concentration of a micro pollutant which showed to be very to extremely influential to many of the parameters. UV absorption as a NOM surrogate is a promising variable to be included in future models. Model extension by splitting up the UVA310 into a soluble and a particulate fraction seemed to be a good approach to model AOP treatment of real (waste)waters containing both dissolved and particulate (suspended) material

    Full-scale modelling of an ozone reactor for drinking water treatment

    Get PDF
    In 2003, the Flemish Water Supply Company (VMW) extended its drinking water production site in Kluizen (near Ghent, Belgium) with a combined ozonation and biological granular activated carbon (BGAC) filtration process. Due to this upgrade, biostability increased, less chlorination was needed and drinking water quality improved significantly. The aim of this study was to describe the full-scale reactor with a limited set of equations. In order to describe the ozonation process, a model including key processes such as ozone decomposition, organic carbon removal, disinfection and bromate formation was developed. Kinetics were implemented in WEST® and simulation results were compared to real data. The predicting performance was verified with a goodness-of-fit test and key parameters were determined through a local sensitivity analysis. Parameters involving optical density (both rate constants and stoichiometric coefficients) strongly affect model output. Some parameters with respect to bromate and bacteria showed to be only, but to a large extent, sensitive to their associated concentrations. A scenario analysis was performed to study the system’s behavior at different operational conditions. It was demonstrated that the model is able to describe the operation of the full-scale ozone reactor, however, further data collection for model validation is necessary

    Modelling and simulation of a nitrification biofilter for drinking water purification

    Get PDF
    For the purification of pure and microbiologically safe drinking water, different treatment steps are necessary. One of those steps is the removal of ammonium, which can, e. g. be accomplished through nitrification in a biofilter. In this study, a model for such a nitrifying biofilter was developed and the model was consequentially used for scenario analysis. A protocol developed for characterisation of wastewater was used to characterise the biofilter influent. A comparison between measured and simulated effluent ammonium, nitrate and oxygen concentrations revealed that the predicting qualities of the constructed model are excellent. As such, the model could be used for further scenario analysis based on model simulations. By simulating the behaviour of the biofilter, it was shown that its capacity to treat unexpected ammonium peaks in the summer time is very limited. Further simulations with the model showed that extensive aeration is not essential for nitrification as sufficiently dissolved oxygen is present in the influent. Therefore the aeration can be reduced to such a level that mixing is ensured. A final set of simulations showed that prolonged ammonium loads can be dealt with by reducing the influent flow rate. The amount of reduction depends of the operating temperature and influent ammonium concentration. The presented simulations can be used by the operators to reduce operating costs and as a decision tool in the case of high ammonium influent concentrations

    Application of a mechanistic UV/hydrogen peroxide model at full-scale: sensitivity analysis, calibration and performance evaluation

    Get PDF
    Numerous mechanistic models describing the UV/H2O2 process have been proposed in literature. In this study, one of them was used to predict the behavior of a full-scale reactor. The model was calibrated and validated with non-synthetic influent using different operational conditions. A local sensitivity analysis was conducted to determine the most important operational and chemical model parameters. Based on the latter, the incident UV irradiation intensity and two kinetic rate constants were selected for mathematical estimation. Hydrogen peroxide concentration, the decadic absorption coefficient at 310 nm (UVA310, as a surrogate for natural organic matter) and pH could be satisfactorily predicted during model validation using an independent data set. It was demonstrated that quick real-time calibration is an option at less controllable full-scale conditions. Parameters that determine the initiation step, i.e. photolysis of hydrogen peroxide, have a large impact on most of the variables. Some reaction rate constants were also of importance, but nine kinetic constants did show absolutely no influence to one of the variables. Parameters related to UV shielding by NOM were of main importance. Hydrogen peroxide concentration was classified as a non-sensitive variable, in contrast to the concentration of a micro pollutant which showed to be very to extremely influential to many of the parameters. UV absorption as a NOM surrogate is a promising variable to be included in future models. Model extension by splitting up the UVA310 into a soluble and a particulate fraction seemed to be a good approach to model AOP treatment of real (waste)waters containing both dissolved and particulate (suspended) material

    How Is the Norepinephrine System Involved in the Antiepileptic Effects of Vagus Nerve Stimulation?

    Full text link
    Vagus Nerve Stimulation (VNS) is an adjunctive treatment for patients suffering from inoperable drug-resistant epilepsy. Although a complete understanding of the mediators involved in the antiepileptic effects of VNS and their complex interactions is lacking, VNS is known to trigger the release of neurotransmitters that have seizure-suppressing effects. In particular, norepinephrine (NE) is a neurotransmitter that has been associated with the clinical effects of VNS by preventing seizure development and by inducing long-term plastic changes that could restore a normal function of the brain circuitry. However, the biological requisites to become responder to VNS are still unknown. In this review, we report evidence of the critical involvement of NE in the antiepileptic effects of VNS in rodents and humans. Moreover, we emphasize the hypothesis that the functional integrity of the noradrenergic system could be a determining factor to obtain clinical benefits from the therapy. Finally, encouraging avenues of research involving NE in VNS treatment are discussed. These could lead to the personalization of the stimulation parameters to maximize the antiepileptic effects and potentially improve the response rate to the therapy

    Envision M5 Venus orbiter proposal

    Get PDF
    EnVision [1,2] is a Venus orbiter mission that will determine the nature and current state of geological activity on Venus, and its relationship with the atmosphere, to understand how and why Venus and Earth evolved so differently. Envision is a finalist in ESA’s M5 Space Science mission selection process, and is being developed in collaboration with NASA, with the sharing of responsibilities currently under assessment. It is currently in Phase A study; final mission selection is expected in June 2021. If selected, EnVision will launch by 2032 on an Ariane 6.2 into a six month cruise to Venus, followed by aerobraking, to achieve a near-circular polar orbit for a nominal science phase lasting at least 4 Venus sidereal days (2.7 Earth years)

    Natural Killer Cells Exhibit a Peculiar Phenotypic Profile in Systemic Sclerosis and Are Potent Inducers of Endothelial Microparticles Release

    Get PDF
    The pathophysiology of systemic sclerosis (SSc) involves early endothelial and immune activation, both preceding the onset of fibrosis. We previously identified soluble fractalkine and circulating endothelial microparticles (EMPs) as biomarkers of endothelial inflammatory activation in SSc. Fractalkine plays a dual role as a membrane-bound adhesion molecule expressed in inflamed endothelial cells (ECs) and as a chemokine involved in the recruitment, transmigration, and cytotoxic activation of immune cells that express CX3CR1, the receptor of fractalkine, namely CD8 and γδ T cells and natural killer (NK) cells. We aimed to quantify circulating cytotoxic immune cells and their expression of CX3CR1. We further investigated the expression profile of NK cells chemokine receptors and activation markers and the potential of NK cells to induce EC activation in SSc. We performed a monocentric study (NCT 02636127) enrolling 15 SSc patients [15 females, median age of 55 years (39–63), 11 limited cutaneous form and 4 diffuse] and 15 healthy controls. Serum fractalkine levels were significantly increased in SSc patients. Circulating CD8 T cells numbers were decreased in SSc patients with no difference in their CX3CR1 expression. Circulating γδ T cells and NK cells numbers were preserved. CX3CR1 expression in CD8 and γδ T cells did not differ between SSc patients and controls. The percentage and level of CX3CR1 expression in NK cells were significantly lowered in SSc patients. Percentages of CXCR4, NKG2D, CD69-expressing NK cells, and their expression levels were decreased in NK cells. Conversely, CD16 level expression and percentages of CD16+ NK cells were preserved. The exposure of human microvascular dermic EC line (HMVEC-d) to peripheral blood mononuclear cells resulted in similar NK cells degranulation activity in SSc patients and controls. We further showed that NK cells purified from the blood of SSc patients induced enhanced release of EMPs than NK cells from controls. This study evidenced a peculiar NK cells phenotype in SSc characterized by decreased chemokine and activation receptors expression, that might reflect NK cells involvement in the pathogenic process. It also highlighted the role of NK cells as a potent mechanism inducing endothelial activation through enhanced EMPs release
    corecore