10 research outputs found
Autonomic dysfunction increases cardiovascular risk in the presence of sleep apnea
The high prevalence of sleep apnea syndrome (SAS) and its direct relationship with an augmented risk of cardiovascular disease (CVD) have raised SAS as a primary public health problem. For this reason, extensive research aiming to understand the interaction between both conditions has been conducted. The advances in non-invasive autonomic nervous system (ANS) monitoring through heart rate variability (HRV) analysis have revealed an increased sympathetic dominance in subjects suffering from SAS when compared with controls. Similarly, HRV analysis of subjects with CVD suggests altered autonomic activity. In this work, we investigated the altered autonomic control in subjects suffering from SAS and CVD simultaneously when compared with SAS patients, as well as the possibility that ANS assessment may be useful for the early stage identification of cardiovascular risk in subjects with SAS. The analysis was performed over 199 subjects from two independent datasets during night-time, and the effects of the physiological response following an apneic episode, sleep stages, and respiration on HRV were taken into account. Results, as measured by HRV, suggest a decreased sympathetic dominance in those subjects suffering from both conditions, as well as in subjects with SAS that will develop CVDs, which was reflected in a significantly reduced sympathovagal balance (p < 0.05). In this way, ANS monitoring could contribute to improve screening and diagnosis, and eventually aid in the phenotyping of patients, as an altered response might have direct implications on cardiovascular health
A comparative study of ECG-derived respiration in ambulatory monitoring using the single-lead ECG
Cardiorespiratory monitoring is crucial for the diagnosis and management of multiple conditions such as stress and sleep disorders. Therefore, the development of ambulatory systems providing continuous, comfortable, and inexpensive means for monitoring represents an important research topic. Several techniques have been proposed in the literature to derive respiratory information from the ECG signal. Ten methods to compute single-lead ECG-derived respiration (EDR) were compared under multiple conditions, including different recording systems, baseline wander, normal and abnormal breathing patterns, changes in breathing rate, noise, and artifacts. Respiratory rates, wave morphology, and cardiorespiratory information were derived from the ECG and compared to those extracted from a reference respiratory signal. Three datasets were considered for analysis, involving a total 59 482 one-min, single-lead ECG segments recorded from 156 subjects. The results indicate that the methods based on QRS slopes outperform the other methods. This result is particularly interesting since simplicity is crucial for the development of ECG-based ambulatory systems
Autonomic Dysfunction Increases Cardiovascular Risk in the Presence of Sleep Apnea
The high prevalence of sleep apnea syndrome (SAS) and its direct relationship with an augmented risk of cardiovascular disease (CVD) have raised SAS as a primary public health problem. For this reason, extensive research aiming to understand the interaction between both conditions has been conducted. The advances in non-invasive autonomic nervous system (ANS) monitoring through heart rate variability (HRV) analysis have revealed an increased sympathetic dominance in subjects suffering from SAS when compared with controls. Similarly, HRV analysis of subjects with CVD suggests altered autonomic activity. In this work, we investigated the altered autonomic control in subjects suffering from SAS and CVD simultaneously when compared with SAS patients, as well as the possibility that ANS assessment may be useful for the early stage identification of cardiovascular risk in subjects with SAS. The analysis was performed over 199 subjects from two independent datasets during night-time, and the effects of the physiological response following an apneic episode, sleep stages, and respiration on HRV were taken into account. Results, as measured by HRV, suggest a decreased sympathetic dominance in those subjects suffering from both conditions, as well as in subjects with SAS that will develop CVDs, which was reflected in a significantly reduced sympathovagal balance (p < 0.05). In this way, ANS monitoring could contribute to improve screening and diagnosis, and eventually aid in the phenotyping of patients, as an altered response might have direct implications on cardiovascular health
Adherence to CPAP therapy: Comparing the effect of three educational approaches in patients with obstructive sleep apnoea
CPAP-therapy is the first-line treatment for moderate to severe obstructive sleep apnoea (OSA). A significant limitation of CPAP treatment is the poor therapy adherence, compromising the beneficial effects.status: publishe
Evaluation of a Commercial Ballistocardiography Sensor for Sleep Apnea Screening and Sleep Monitoring
There exists a technological momentum towards the development of unobtrusive, simple, and reliable systems for long-term sleep monitoring. An off-the-shelf commercial pressure sensor meeting these requirements is the Emfit QS. First, the potential for sleep apnea screening was investigated by revealing clusters of contaminated and clean segments. A relationship between the irregularity of the data and the sleep apnea severity class was observed, which was valuable for screening (sensitivity 0.72, specificity 0.70), although the linear relation was limited ( R 2 of 0.16). Secondly, the study explored the suitability of this commercial sensor to be merged with gold standard polysomnography data for future sleep monitoring. As polysomnography (PSG) and Emfit signals originate from different types of sensor modalities, they cannot be regarded as strictly coupled. Therefore, an automated synchronization procedure based on artefact patterns was developed. Additionally, the optimal position of the Emfit for capturing respiratory and cardiac information similar to the PSG was identified, resulting in a position as close as possible to the thorax. The proposed approach demonstrated the potential for unobtrusive screening of sleep apnea patients at home. Furthermore, the synchronization framework enabled supervised analysis of the commercial Emfit sensor for future sleep monitoring, which can be extended to other multi-modal systems that record movements during sleep
Evaluation of a Commercial Ballistocardiography Sensor for Sleep Apnea Screening and Sleep Monitoring
There exists a technological momentum towards the development of unobtrusive, simple, and reliable systems for long-term sleep monitoring. An off-the-shelf commercial pressure sensor meeting these requirements is the Emfit QS. First, the potential for sleep apnea screening was investigated by revealing clusters of contaminated and clean segments. A relationship between the irregularity of the data and the sleep apnea severity class was observed, which was valuable for screening (sensitivity 0.72, specificity 0.70), although the linear relation was limited (<inline-formula> <math display="inline"> <semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics> </math> </inline-formula> of 0.16). Secondly, the study explored the suitability of this commercial sensor to be merged with gold standard polysomnography data for future sleep monitoring. As polysomnography (PSG) and Emfit signals originate from different types of sensor modalities, they cannot be regarded as strictly coupled. Therefore, an automated synchronization procedure based on artefact patterns was developed. Additionally, the optimal position of the Emfit for capturing respiratory and cardiac information similar to the PSG was identified, resulting in a position as close as possible to the thorax. The proposed approach demonstrated the potential for unobtrusive screening of sleep apnea patients at home. Furthermore, the synchronization framework enabled supervised analysis of the commercial Emfit sensor for future sleep monitoring, which can be extended to other multi-modal systems that record movements during sleep
Multilevel interval coded scoring to assess the cardiovascular status of sleep apnea patients using oxygen saturation markers
OBJECTIVE: Studies have shown an increased cardiovascular risk in obstructive sleep apnea (OSA) patients. In order to prioritize treatment of high risk patients, there is a need for improved cardiovascular OSA phenotyping. This study investigates the use of oxygen saturation (SpO 2) parameters for cardiovascular risk assessment of OSA patients. To this end, a novel multilevel interval coded scoring (mICS) algorithm is proposed. METHODS: The study includes SpO 2 recordings from 1987 overnight polysomnographies, of which 974 are from patients suspected to have OSA, 931 from the general population based Sleep Heart Health Study and 83 from healthy controls. The minimal SpO 2 value, SpO 2 upslope and amplitude ratio of desaturation over resaturation are extracted for all oxygen desaturations and averaged per patient. These three SpO 2 parameters are used together with patient demographics to develop a mICS model to predict the probability that a patient had a cardiovascular condition, or had already experienced a cardiovascular event, at the time of the polysomnography. RESULTS: Including the SpO 2 parameters in the mICS together with age and BMI improves the model's performance by 2.7% and leads to a test area under the curve (AUC) of 69.5% for the detection of any cardiovascular comorbidity. Moreover, an increase in AUC of 5% was obtained for the detection of cardiovascular events, resulting in an AUC of 93.5%. CONCLUSIONS: This study shows that parameters based on SpO 2 and the mICS model are useful to predict the cardiovascular comorbidity status of OSA patients. SIGNIFICANCE: The proposed model could be used to assist in prioritizing OSA patients for treatment
Benchmarking Transfer Entropy Methods for the Study of Linear and Nonlinear Cardio-Respiratory Interactions
Transfer entropy (TE) has been used to identify and quantify interactions between physiological systems. Different methods exist to estimate TE, but there is no consensus about which one performs best in specific applications. In this study, five methods (linear, k-nearest neighbors, fixed-binning with ranking, kernel density estimation and adaptive partitioning) were compared. The comparison was made on three simulation models (linear, nonlinear and linear + nonlinear dynamics). From the simulations, it was found that the best method to quantify the different interactions was adaptive partitioning. This method was then applied on data from a polysomnography study, specifically on the ECG and the respiratory signals (nasal airflow and respiratory effort around the thorax). The hypothesis that the linear and nonlinear components of cardio-respiratory interactions during light and deep sleep change with the sleep stage, was tested. Significant differences, after performing surrogate analysis, indicate an increased TE during deep sleep. However, these differences were found to be dependent on the type of respiratory signal and sampling frequency. These results highlight the importance of selecting the appropriate signals, estimation method and surrogate analysis for the study of linear and nonlinear cardio-respiratory interactions
A Comparative Study of ECG-derived Respiration in Ambulatory Monitoring using the Single-lead ECG
Cardiorespiratory monitoring is crucial for the diagnosis and management of multiple conditions such as stress and sleep disorders. Therefore, the development of ambulatory systems providing continuous, comfortable, and inexpensive means for monitoring represents an important research topic. Several techniques have been proposed in the literature to derive respiratory information from the ECG signal. Ten methods to compute single-lead ECG-derived respiration (EDR) were compared under multiple conditions, including different recording systems, baseline wander, normal and abnormal breathing patterns, changes in breathing rate, noise, and artifacts. Respiratory rates, wave morphology, and cardiorespiratory information were derived from the ECG and compared to those extracted from a reference respiratory signal. Three datasets were considered for analysis, involving a total 59 482 one-min, single-lead ECG segments recorded from 156 subjects. The results indicate that the methods based on QRS slopes outperform the other methods. This result is particularly interesting since simplicity is crucial for the development of ECG-based ambulatory systems.Circuits and System