3,020 research outputs found

    Phase Transformation Behavior and Stability of LiNiO2_{2} Cathode Material for Li-Ion Batteries Obtained from In Situ Gas Analysis and Operando X-Ray Diffraction

    Get PDF
    Ni-rich layered oxide cathode materials, in particular the end member LiNiO2_{2}, suffer from drawbacks such as high surface reactivity and severe structural changes during de-/lithiation, leading to accelerated degradation and limiting practical implementation of these otherwise highly promising electrode materials in Li-ion batteries. Among all known phase transformations occurring in LiNiO2_{2}, the one from the H2 phase to the H3 phase at high state of charge is believed to have the most detrimental impact on the material’s stability. In this work, the multistep phase transformation process and associated effects are analyzed by galvanostatic cycling, operando X-ray diffraction, and in situ pressure and gas analysis. The combined results provide thorough insights into the structural changes and how they affect the stability of LiNiO2_{2}. During the H2–H3 transformation, the most significant change occurs in the c-lattice parameter, resulting in large mechanical stress in LiNiO2_{2}. As for electrochemical stability, it suffers strongly in the H3 region. Oxygen evolution is observed not only during charge but also during discharge and found to be correlated with the presence of the H2 and H3 phases. Taken together, the experimental data improve the understanding of the degradation processes and the inherent instability of LiNiO2_{2} in Li-ion cells when operated above around 75% state of charge

    Evaluation of a oxygenate based plant protection treatment in viticulture against fungal diseases

    Get PDF
    Over the last decades the use of pesticides in vine protection, e.g. copper is under severe discussion and is becoming a major concern in viticulture. Since the effectiveness of oxygenates against various microorganisms had been proven in the medical field a strategy for oxygenate-based plant protection was developed and evaluated over three vintages. The production of the oxygenate is following the Criegee-mechanism using O3 and unsaturated natural plant derived fatty acids forming so called ozonides. Therefore the effect of the treatment has been evaluated in a holistic approach, covering the efficiency against fungal diseases, protection of desired beneficial insects, the micro flora, various secondary metabolites of the grapevine and the resulting sensory profile of the wines. The biological effectiveness has been measured by using different in-vivo and in-vitro studies. The influence on desired berry compounds, e.g. anthocyanins, have been determined by classical GC-MS and HPLC methods. Positive effects against downy and powdery mildew could be demonstrated. No negative effects against insects, naturally occurring microorganisms, and desired berry compounds were observed. Even spontaneous fermentation was not inhibited. Quantitative descriptive sensory analysis as well as CATA/RATA showed no negative effect of the treatment

    Charge Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation

    Get PDF
    Ni-rich LiNixCoyMnzO2 (NCM) cathode materials have great potential for application in next-generation lithium-ion batteries owing to their high specific capacity. However, they are subjected to severe structural changes upon (de)lithiation, which adversely affects the cycling stability. Herein, we investigate changes in crystal and electronic structure of NCM811 (80% Ni) at high states of charge by a combination of operando X-ray diffraction (XRD), operando hard X-ray absorption spectroscopy (hXAS), ex situ soft X-ray absorption spectroscopy (sXAS), and density functional theory (DFT) calculations, and correlate the results with data from galvanostatic cycling in coin cells. XRD reveals a large decrease in unit cell volume from 101.38(1) Å3 to 94.26(2) Å3 due to collapse of the interlayer spacing when x(Li) < 0.5 (decrease in c-axis from 14.469(1) Å at x(Li) = 0.6 to 13.732(2) Å at x(Li) = 0.25). hXAS shows that the shrinkage of the transition metal-oxygen layer mainly originates from nickel oxidation. sXAS, together with DFT-based Bader charge analysis, indicates that the shrinkage of the interlayer, which is occupied by lithium, is induced by charge transfer between O 2p and partially filled Ni eg orbitals (resulting in decrease of oxygen-oxygen repulsion). Overall, the results demonstrate that high-voltage operation of NCM811 cathodes is inevitably accompanied by charge transfer-induced lattice collapse

    Unconventional crystal structure of the high-pressure superconductor La3_3Ni2_2O7_7

    Full text link
    The discovery of high-temperature superconductivity in La3_3Ni2_2O7_7 at pressures above 14 GPa has spurred extensive research efforts. Yet, fundamental aspects of the superconducting phase, including the possibility of a filamentary character, are currently subjects of controversial debates. Conversely, a crystal structure with NiO6_6 octahedral bilayers stacked along the cc-axis direction was consistently posited in initial studies on La3_3Ni2_2O7_7. Here we reassess this structure in optical floating zone-grown La3_3Ni2_2O7_7 single crystals that show signs of filamentary superconductivity. Employing scanning transmission electron microscopy and single-crystal x-ray diffraction under high pressures, we observe multiple crystallographic phases in these crystals, with the majority phase exhibiting alternating monolayers and trilayers of NiO6_6 octahedra, signifying a profound deviation from the previously suggested bilayer structure. Using density functional theory, we disentangle the individual contributions of the monolayer and trilayer structural units to the electronic band structure of La3_3Ni2_2O7_7, providing a firm basis for advanced theoretical modeling and future evaluations of the potential of the monolayer-trilayer structure for hosting superconductivity

    Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni‐Rich NCM and Li‐Rich HE‐NCM Cathode Materials in Li‐Ion Batteries

    Get PDF
    In order to satisfy the energy demands of the electromobility market, both Ni-rich and Li-rich layered oxides of NCM type are receiving much attention as high-energy-density cathode materials for application in Li-ion batteries. However, due to different stability issues, their longevity is limited. During formation and continuous cycling, especially the electronic and crystal structure suffers from various changes, eventually leading to fatigue and mechanical degradation. In recent years, comprehensive battery research has been conducted at Karlsruhe Institute of Technology, mainly aiming at better understanding the primary degradation processes occurring in these layered transition metal oxides. The characteristic process of formation and mechanisms of fatigue are fundamentally characterized and the effect of chemical composition on cell chemistry, electrochemistry, and cycling stability is addressed on different length scales by use of state-of-the-art analytical techniques, ranging from “standard” characterization tools to combinations of advanced in situ and operando methods. Here, the results are presented and discussed within a broader scientific context

    Embodied semantics in a second language: critical review and clinical implications

    Get PDF
    The role of the sensorimotor system in second language (L2) semantic processing as well as its clinical implications for bilingual patients has hitherto been neglected. We offer an overview of the issues at stake in this under-investigated field, presenting the theoretical and clinical relevance of studying L2 embodiment and reviewing the few studies on this topic. We highlight that (a) the sensorimotor network is involved in L2 processing, and that (b) in most studies, L2 is differently embodied than L1, reflected in a lower degree or in a different pattern of L2 embodiment. Importantly, we outline critical issues to be addressed in order to guide future research. We also delineate the subsequent steps needed to confirm or dismiss the value of language therapeutic approaches based on embodiment theories as a complement of speech and language therapies in adult bilinguals

    Mechanical cell competition kills cells via induction of lethal p53 levels.

    Get PDF
    Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scrib(KD)) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scrib(KD) cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells.This work was supported by a Cancer Research UK Programme Grant (EP and LW A12460), a Royal Society University Research fellowship to EP (UF0905080), a Wellcome Trust PhD studentship to I.K, a Cambridge Cancer Centre PhD studentship to MG and Core grant funding from the Wellcome Trust (092096) and CRUK (C6946/A14492).This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/ncomms1137
    corecore