4 research outputs found

    Population structure and linkage disequilibrium of ICRISAT foxtail millet (Setaria italica (L.) P. Beauv.) core collection

    Get PDF
    Use of diverse germplasm is a key factor which allows high level of resolution due to extensive recombination in the history. Therefore, population used in association mapping should posses as many phenotypes as possible. One of the methods to obtain most of the phenotypes is to construct the core collection. The ICRISAT foxtail millet core collection consisting of 155 accessions was genotyped using 72 simple sequence repeat (SSR) markers to investigate the genetic diversity, population structure and linkage disequilibrium (LD). A high degree of molecular diversity among the accessions was found, with an average of 16.69 alleles per locus. STRUCTURE analyses classify the accessions into four subpopulations (SP) based on SSR allelic diversity. The Neighbor joining clustering and the principal coordinate analysis were in accordance with the racial classification. The distribution of molecular genetic variation among and within the four SP and three races showed high degree of variability within each group, and low level of genetic distance (GD) among the groups. LD decay of <40 cM of GD in foxtail millet core collection was observed, which suggests that it could be possible to achieve resolution down to the 40 cM level. From this investigation, it is evident that the foxtail millet core collection developed at ICRISAT is very diverse and could be a valuable resource for trait association mapping, crop breeding and germplasm management

    Experimental studies on pollenmediated gene flow in Sorghum bicolor (L.) Moench using malesterile bait plants

    No full text
    Information on the potential of pollen mediated gene flow (PMGF) in sorghum is required for ensuring varietal purity and to mitigate risk transgenic gene flow. Replicated trials were conducted in Kenya using a local landrace, ‘Ochuti’ as pollen donor surrounded by male-sterile pollen baits. Frequency of PMGF decreased with the increase of distance from pollen sources and was significantly influenced by wind direction and speed. Anther dehiscence correlated with increase in vapour pressure deficit in the morning. A negative exponential regression model with logarithmic transformation of PMGF and square-root transformation of distance from source field best fitted the data. Up to 50% of female florets on a male sterile (MS) plant were pollinated at 1 m from pollen source and declined to 14% at 10 m. The maximum distance of PMGF using the PMGF model, based on a threshold of one seed per MS plant, was 203 m when data above the 95th percentile is considered. However, in the presence of self-produced pollen of male-fertile target plants, the possibility of long-distance cross-pollination may be very low

    Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT foxtail millet core collection

    No full text
    Foxtail millet (Setaria italica (L.) P. Beauv.) is an ideal crop for changing climate and food habits of peoples due to its short duration, high photosynthetic efficiency, nutritional richness and fair resistance to pest and diseases. However, foxtail millet yields are low mainly due to the lack of effort for its improvement and the lack of proper utilization of existing genetic variability. To enhance the use of diverse germplasm in breeding programmes, a core collection in foxtail millet consisting of 155 accessions was established. Core collection accessions were fingerprinted using 84 markers (81 simple sequence repeats (SSRs) and three Expressed Sequence Tag (EST)-SSRs). Our results showed the presence of greater molecular diversity in the foxtail millet core collection. The 84 markers detected a total of 1356 alleles with an average of 16.14 alleles (4–35) per locus. Of these, 368 were rare alleles, 906 common alleles and 82 the most frequent alleles. Sixty-one unique alleles that were specific to a particular accession and useful for germplasm identification were also detected. In this study, the genetic diversity of foxtail millet was fairly correlated well with racial classification, and the race Indica showed a greater genetic distance from the races Maxima and Moharia. The pairwise estimate of dissimilarity was >0.50 except in 123 out of 11,935 pairs which indicated a greater genetic variability. Two hundred and fifty pairs of genetically most diverse accessions were identified. This large molecular variation observed in the core collection could be utilized effectively by breeders or researchers for the selection of diverse parents for breeding cultivars and the development of mapping populations
    corecore