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Abstract  

Use of diverse germplasm is a key factor which allows high level of resolution due to extensive 

recombination in the history. Therefore, population used in association mapping should posses as 

many phenotypes as possible. One of the methods to obtain most of the phenotypes is to 

construct the core collection. The ICRISAT foxtail millet core collection consisting of 155 

accessions was genotyped using 72 simple sequence repeat (SSR) markers to investigate the 
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genetic diversity, population structure and linkage disequilibrium. A high degree of molecular 

diversity among the accessions was found, with an average of 16.69 alleles per locus. 

STRUCTURE analyses classify the accessions into four subpopulations based on SSR allelic 

diversity. The Neighbor joining clustering and the principal coordinate analysis (PCoA) were in 

accordance with the racial classification. The distribution of molecular genetic variation among 

and within the four sub-populations and three races showed high degree of variability within 

each group, and low level of genetic distance among the groups. Linkage disequilibrium (LD) 

decay of less than 40 cM of genetic distance in foxtail millet core collection was observed, which 

suggests that it could be possible to achieve resolution down to the 40 cM level. From this 

investigation, it is evident that the foxtail millet core collection developed at ICRISAT is very 

diverse and could be a valuable resource for trait association mapping, crop breeding and 

germplasm management.  

 

 

Key words: Analysis of molecular variance; Core collection; Foxtail millet; Genetic diversity; 
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Introduction  

Small millets are gaining importance because of their wider adaptability to drought and varied 

soil and environmental conditions, and nutritional benefits. Foxtail millet (Setaria italica (L.) P. 

Beauv.) (2n = 18), is one among the small millets, distributed widely around warm and temperate 

regions of Asia, Europe, North America, Australia and North Africa (Zhang et al. 2012). It is an 

ancient crop, its domestication in China dates back to 8,700 years ago (Lu et al. 2009), has 

greatly contributed to human civilizations both in Asia and Europe (Barton et al. 2009). Foxtail 

millet is as an important food and fodder crop in semi-arid tropics, particularly in changing 

climate. It produces substantial yield under varied environmental conditions, remains an essential 

food for home consumption in parts of India, China, Korea and Japan (Austin 2006). 

Taxonomically, foxtail millet is comprised of two subspecies, S. italica subsp. italica and subsp. 

viridis, and the wild ancestor of foxtail millet is S. viridis (Kihara and Kishimoto 1942; Li et al. 

1945). Prasada Rao et al. (1987) have recognized three races of foxtail millet (moharia, maxima 

and indica) based on the morphological features.  

 Its relatively small genome size (~400Mb)(Bennetzen et al. 2012), inbreeding nature, 

short duration, C4 nature, and wide geographic distribution and adaptability, make it an ideal 

model for grass functional genomics to investigate plant architecture, genome evolution, drought 

tolerance and physiology in the bioenergy grasses (Doust et al. 2009; Wang et al. 2010; Li and 

Brutnell 2011). A diversified germplasm collection plays a key role in both breeding and 

genomic research for any crop species. The International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT), Patancheru, India has 1,534 foxtail millet accessions from 26 

countries. To make use of this, Upadhyaya et al. (2008) developed a core collection consisting of 

155 accessions, which represent 10.51% of 1,474 foxtail millet germplasm accessions conserved 

in ICRISAT genebank covering 23 countries. The entire germplasm collection of 1,534 

accessions in foxtail millet is not large when compared with other crops like sorghum in 

ICRISAT Genebank (about 38,000 accessions), yet it is large in view of very low research 

priorities for neglected and under-utilized crops like foxtail millet. Moreover, this core collection 

can be evaluated extensively at a relatively low cost and information derived could be used a 

guide toward efficient utilization of the entire collection (Upadhyaya et al. 2008). Further, 

assessment of genetic diversity, population structure and linkage disequilibrium (LD) of foxtail 
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millet core collection could provide essential information for germplasm management, 

association mapping and crop improvement.  

 The phenotypic variations of many complex traits of agronomic importance are 

influenced by many genes, environment and interaction between genes and environment 

(Holland 2007). Linkage analysis and association mapping are the two most commonly used 

tools for dissecting complex traits (Zhu et al. 2008). Association mapping is an effective 

approach to detect QTL, if information on population structure and linkage disequilibrium is 

available. Association mapping has been proved to be an effective approach to mine the elite 

genes in germplasm resources (Zhang et al. 2011), has been successfully applied in several crops 

(Agrama et al. 2007; Malosetti et al. 2007; Zhao et al. 2007; Murray et al. 2009; Wen et al. 2009; 

Borba et al. 2010; Liu et al. 2010; Neumann et al. 2011; Dodig et al. 2012; Upadhyaya et al. 

2012a; Upadhyaya et al. 2012b). One of the foremost factors is use of diverse germplasm in 

association mapping panel, which allows high level of resolution due to extensive recombination 

in the history (Wang et al. 2008). Therefore, choice of germplasm is the preliminary factor which 

determines the resolution of association mapping. Population used in association mapping should 

posses as many phenotypes as possible (Flint-Garcia et al. 2005). To achieve this, one of the 

methods to obtain most of the phenotypes is to construct the core collection (Zhang et al. 2011). 

A core collection (Frankel 1984) consists of a limited set of accessions (about 10%) derived from 

an existing germplasm collection, chosen to represent the genetic spectrum in the whole 

collection. In a species for which a core or mini core (Upadhyaya and Ortiz 2001) collections 

have been established, the core/mini core would be the ideal material for association mapping 

(Whitt and Buckler 2003).  

 Presence of population structure in the association panel, which is a division of the 

population into distinct subgroups related by kinship, leads to false positive association in 

association mapping (Yu and Buckler 2006; Zhu et al. 2008). Resolution of association studies 

depends on the structure of Linkage disequilibrium (LD) across the genome (Remington et al. 

2001), low level of LD could lead to impractical whole-genome scanning because of the excessive 

number of markers required (Kruglyak 1999). Therefore, detailed information on population 

structure and extent of LD within the population are of fundamental importance for association 

mapping (Stich et al. 2005). Only a few previous researches on genetic diversity and population 

structure have been reported in foxtail millet. Wang et al. (2012) reported four subgroups in 250 
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landraces, which are in good accordance with eco-geographical distribution in China. Hirano et al. 

(2011) did population structure analysis by transposon display, which classified foxtail millet 

landraces into eight clusters that are closely related with geographic origins and suggest a 

monophyletic origin of foxtail millet domestication. Liu et al. (2011) investigated the population 

structure of foxtail millet and identified six groups, which matches with their pedigree information, 

in general, but not with their geographic origins.  

In this study, a foxtail millet core collection (Upadhyaya et al. 2008) consisting of 155 

accessions was used. The abundant variation of the foxtail millet core collection provides an 

important reservoir of genetic diversity and potential sources of beneficial alleles for its 

improvement (Upadhyaya et al. 2008). However, the knowledge on the level of genetic diversity 

and linkage disequilibrium in foxtail millet and its wild ancestor is very limited (Wang et al., 

2010), which is necessary for dissecting DNA polymorphism underlying phenotypic variation 

using association mapping approach.  To make use of foxtail millet core collection as association 

panel, the study was formulated to (1) examine the population structure of a foxtail millet core 

collection; (ii) investigate the genetic diversity within and among subpopulations, and (iii) 

identify the extent of LD within core collection. Results of this study would provide valuable 

information for trait association mapping using foxtail millet core collection, effective 

germplasm conservation, genomic studies and breeding applications.  
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Materials and Methods 

Plant materials  

A foxtail millet core collection consisting of 155 accessions, which is 10.51% of 1474 foxtail 

millet accessions from 23 countries conserved in ICRISAT genebank,  was used (Upadhyaya et 

al. 2008). The collection consisted of 102 accessions (65.8%) from the race ‘indica’, 24 

accessions (15.5%) from the race ‘maxima’ and 29 accessions (18.7%) from the race ‘moharia’.  

Genotyping by simple sequence repeat (SSR) markers  

The details of SSR genotyping are available elsewhere (Vetriventhan et al. 2012), which have 

been followed in the present investigation. DNA was extracted from the 20 days old seedlings of 

155 accessions using a high-throughput mini-DNA extraction method (Mace et al. 2003). A total 

of 72 SSR markers located across nine chromosomes of foxtail millet were used (Jia et al. 2009). 

The forward primers of all the SSRs were synthesized by adding M13-forward primer sequence 

(5ʹ CACGACGTTGTAAAACGAC3ʹ) at the 5ʹ end of each primer. Genomic DNA of all the 

accessions was normalized to a uniform concentration of 5 ng l
-1

 and the PCR were performed 

in 5 l reaction. PCR products were then size-separated by capillary electrophoresis using an 

ABI Prism 3730xl DNA analyzer (Applied Biosystems Inc.). Raw data produced from ABI 

3730xl DNA Analyser was analysed using Genemapper
®
 software version 4.0 (Applied 

Biosystems, USA) and fragment size was scored in base pairs (bp) based on the relative 

migration of the internal size standard, LIZ 500 (Applied Biosystems, USA).  

Population structure analysis  

The model-based software program STRUCTURE 2.3.2 (Pritchard et al. 2000a; Pritchard et al. 

2000b) was employed to subdivide accessions into genetic sub-population. No prior information 

was used to define sub-populations. To determine most appropriate k value, burn-in Markov 

Chain Monte Carlo (MCMC) replication was set to 10,000 and data were collected over 1,00,000 

MCMC replications in each run. Five independent runs were performed setting the number of 

population (k) from 2 to 10 using a model allowing for no-admixture and correlated allele 

frequencies. The basis of this kind of clustering method is the allocation of individual genotypes 

to k clusters in such a way that Hardy-Weinberg equilibrium and linkage equilibrium are valid 

within clusters, whereas these kinds of equilibrium are absent between clusters. The k value was 
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determined based on the rate of change in LnP(D) between successive k, stability of grouping 

pattern across five run and germplasm information about the material under study.  

 Allele number, gene diversity, polymorphic information content (PIC), and 

heterozygosity (%) of each sub-population were calculated using PowerMarker version 3.25 (Liu 

and Muse 2005). An analysis of molecular variance (AMOVA) was performed based on 999 

permutations using the software GENALEX 6.41 (Peakall and Smouse 2006) to estimate population 

differentiation among the sub-populations. Furthermore, pairwise genetic distance (Nei 1972), 

FST between sub-populations and Shannon’s information index (I) were calculated using the 

software GENALEX 6.41. Pairwise Nei’s genetic distance and FST indicates the genetic distance 

between the populations, measure of the extent of genetic differentiation among subpopulations.  

The low FST and Nei’s genetic distance values between populations were indicative of minimal 

differentiation or high gene flow between the populations and vice versa. Principal coordinate 

analysis (PCoA) and neighbor-joining phylogenetic analysis was conducted to further assess the 

population subdivisions.  PCoA was performed based on Nei (1973) distance matrix using 

GENALEX 6.41 and neighbor-joining tree was constructed based on the simple matching 

dissimilarity as implemented in DARwin 5.0.158 (2009-07-06) programme (Perrier and 

Jacquemoud-Collet 2006).  

Linkage disequilibrium (LD)  

The level of LD between pairs of locus was performed and the significance of pair-wise LD 

among all possible SSR loci was evaluated using TASSEL 2.1 (Bradbury et al. 2007) with the 

rapid permutation test in 10,000 shuffles. LD was estimated by squared allele-frequency 

correlations (r
2
) between pairs of SSR loci. The pair of loci was considered to be significant in 

LD if P was ≤0.01. 
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Results 

Overall genetic diversity  

Seventy two SSRs detected a total of 1,202 alleles in the core collection. The average number of 

alleles per locus was 16.69, ranging from 4 to 35 (Table 1). The mean gene diversity was 0.73, 

and the mean PIC was 0.72. The average Shannon’s information index was 1.99, ranging from 

0.78 to 3.14. A total of 35 private or unique alleles that were present only in one accession and 

absent in the other accessions were detected. The average heterozygosity was 0.04, close to 

100% homozygosity.   

Population structure and genetic diversity of subpopulations  

As per the STRUCTURE analysis, the number of population was assumed to be four (k=4) 

based on rate of change in LnP(D) between successive k, stability of grouping pattern across five 

runs and germplasm information about the material under study (Figure 1). Out of five runs for 

k=4, the run with highest likelihood value was selected to assign the posterior membership 

coefficient (Q) to each accession. A graphical bar plot was then generated with the posterior 

membership coefficient (Figure 2). The four sub-populations (SP) as inferred in the 

STRUCTURE analysis were named as SP1, SP2, SP3 and SP4, respectively.  Overall proportions 

of membership of the accessions in each of the four subpopulations (SP1 to SP4) were 0.365, 

0.045, 0.058 and 0.533, respectively. SP1 contained 59 accessions and represented all three races, 

of which, moharia dominated with 27 accessions followed by maxima (18 accessions) and indica 

(14 accessions). SP2 consisted of four accessions; three belongs to race, maxima, while all the 

seven accessions in SP3 belong to indica race. Eighty-one of the 84 accessions in SP4 belong to 

race indica.   

 The genetic diversity was assessed for each subpopulation (Table 1). SP1 had the highest 

gene diversity (0.80), number of alleles per locus (14.40), Shannon’s information index (2.14) 

and population specific alleles (417) compared with other subpopulations. Among 1,202 alleles 

detected in core collection, 1,037 alleles were found in SP1, 180 alleles in SP2, 185 alleles in SP3 

and 728 alleles in SP4. SP1 had the highest population-specific or private allele followed by SP4.  

Among the 1,037 alleles detected in SP1, 417 alleles were private alleles. A total of 13 private 

alleles in SP2, 4 in SP3 and 126 in SP4 were found. Sample size of SP1 is smaller than SP4, 

exhibited relatively high gene diversity. Eighty-one of the 84 accessions in SP4 belong to race 
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indica of which 74 accessions were from India, showed the maximum gene diversity, PIC and 

allele number after SP1. Among 94 accessions from India, 74 accessions were grouped together 

under the SP4 and seven accessions were grouped under SP3. In total, among 155 accessions, 94 

accessions are from India, 12 accessions from Sriya, seven accessions from Russia and CIS, six 

from China, five each from Korea and USA, and other countries are represented by less than 

three accessions (Table 2).  

Assessment of population structure 

The genetic relationship among the sub-populations was measured by Nei’s genetic distance and 

pairwise estimate of FST (Table 3). The pairwise FST  was the highest between SP2 and SP3 

(0.385) followed by SP2 and SP4 (0.248). Pairwise estimates of FST values were found to be 

significant between populations (Table 3), indicate the existence of significant genetic 

differentiation among subpopulations. The genetic distance data agreed with the FST estimate. 

The SP3 showed the lowest genetic distance with SP4 (0.256), and SP1 showed the lowest genetic 

distance with SP4 (0.300) whereas, SP2 showed the greatest genetic distance with SP3 (1.141) 

followed by SP2 with SP4 (0.842).  

 PCoA and the neighbor-joining phylogenetic analysis were performed to further assess 

the population subdivisions. In the PCoA, the first three PCos explained 66.9% variation, of 

which, PCo1 and PCo2 contributed 37.3% and 16.4%, respectively of the SSR variation among 

the 155 accessions (Figure 3a and 3b). Plotting the first two PCos and coding of genotypes 

according to three biological races of foxtail millet (Figure 3a) shows clear separation of the race 

indica, most of which were present in SP4 (Figure 2). The race maxima and moharia were not 

clearly separated as in SP1. Further, plotting the first two PCos and coding of genotypes 

according to the four sub-populations identified using STRUCTURE shows the clear separation 

of four subpopulations (SP1 to SP4) (Figure 3b). The neighbor-joining tree of 155 core accessions 

and color coding of genotypes revealed that SP1 (Red) and SP4 (Blue) were the major 

subpopulations along with two small subpopulations, SP2 (Green) and SP3 (Black) (Figure 4), 

fairly corresponded to STRUCTURE analysis. Further, AMOVA on the basis of sub-populations 

and the three races of foxtail millet showed consistent relationship, representing high intra-

population variation, which confirmed that the population has obvious structure (Table 4).  
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Linkage disequilibrium (LD) 

The extent of LD was assessed among 2,556 marker pairs for all accessions. The r
2
, the square of 

the correlation coefficient between two loci was used to measure LD. In a total of 2,556 pair 

wise comparisons (352 linked and 2,204 unlinked marker pairs) on the basis of 72 mapped SSR 

loci, 67%, 53% and 39% of SSR marker pairs showed significant LD at P≤0.05, P≤0.01 and 

P≤0.001, respectively. At the whole population level, the r
2 

ranged from 0.0008 to 0.19 and 

1,430 pairs of loci were significant at P≤0.01. Scatter plot of the LD values based on the r
2 

values of 155 accessions are shown in Figure 5, where LD values for inter-chromosomal markers 

are compiled in a single file at 350 cM. Among the inter-chromosomal pairs, r
2 

ranged from
 
0.01 

to 0.17. At intra-chromosome level, LD was very common for distances 40 cM.   
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Discussion 

Genetic diversity of foxtail millet core collection  

In this investigation, a foxtail millet core collection was characterized using 72 SSR markers. 

High level of polymorphism was observed for all the SSR loci. The average number of alleles 

per locus was 16.69. The number of alleles ranged from 4 to 35, which was higher than the 

earlier reports in foxtail millet (6.16, Jia et al. 2009; 14.04, Liu et al. 2011; 2.4, Lin et al. 2012) 

and less than the Chinese foxtail millet landraces (6-47, Wang et al. 2012) and Chinese green 

foxtail millet (33.5, Jia et al. 2013a), illustrated that ICRISAT foxtail millet core collection 

contain high genetic diversity, which could provide valuable and important gene resources for 

foxtail millet breeding programs and for genomic study. Higher diversity reported in the 250 

accession of Chinese foxtail millet (Wang et al. 2012) might be due to its larger size, represents 

1% of foxtail millet kept in the Chinese National Gene Bank (CNGB), which is larger than 

foxtail millet conserved at ICRISAT, Patencheru, India. In comparison with that of foxtail millet 

landraces, Jia et al. (2013a) reported the higher alleles per locus in green foxtail millet, shows 

that, a large part of the genetic diversity in the wild gene pool was lost during domestication of 

foxtail millet  and necessity for germplasm collection and protection of the wild relatives of 

crops (Jia et al. 2013a). Higher genetic diversity of germplasm is favorable for genetic marker 

development, construction of segregating population, functional gene cloning and association 

mapping and provides enriched gene resources for gene mining in the grass family (Wang et al. 

2012). Compared with green foxtail millet, large part of the genetic diversity in the wild gene 

pool was lost during the domestication of foxtail millet. Average heterozygosity in the foxtail 

millet core collection was 0.04, which is less than earlier reports in foxtail millet and green millet 

(0.07-0.19) (Lin et al. 2012; Kumari et al. 2013; Jia et al. 2013a), which indicate that, the 

accessions used in the present study are very much close to inbred lines.  

Population structure and relationship between population structure with racial 

classification and geographical distribution   

Association mapping with diverse germplasm or wild populations can identify new superior 

alleles that were not captured by breeding practices and supports introgression of these alleles 

into elite breeding germplasm (Kumar et al. 2007). However, understanding population structure 

is essential to avoid spurious association between phenotype and genotype in association 
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mapping (Pritchard et al. 2000b). A model based approach implemented in the software 

STRUCTURE is the most frequently used approach. In the present study STRUCTURE analysis 

revealed the existence of population subdivision and identified four sub-populations in foxtail 

millet core collection. This population structure might be due to the presence of three races of 

foxtail millet, indica, maxima and moharia.  The total number of alleles, number of alleles per 

locus, PIC and gene diversity was more in SP1 and SP4, which can be explained by the difference 

in the sample size and diversity within the sub-population, which can lead to differential allelic 

richness (Yang et al. 2010). Sample size of SP1 is smaller than SP4, exhibited relatively high gene 

diversity, and is due to presence of all three races from different geographic regions.  

 The 155 accessions of the foxtail millet core collection were from 23 countries, with the 

majority being from India, and a few accessions were from other countries, we did not obtain a 

clear-cut grouping of the accessions based on either countries or regions of origin. However, the 

population subdivisions detected through STRUCTURE, PCoA and neighbor-joining 

phylogenetic analysis, FST and genetic distance were in accordance with racial classification of 

foxtail millet. Eighty-one of the 84 accessions in SP4 belong to race indica of which 74 

accessions were from India, showed the maximum gene diversity, PIC and allele number after 

SP1 suggesting that, there is lot of genetic variation in foxtail millet germplasm collected from 

India. The distribution of molecular genetic variation among and within the four sub-populations 

and three races revealed high degree of variability within each group, and low level of genetic 

distance among the groups. This results in agreement with earlier study in foxtail millet (Wang et 

al. 2012) and other crops (Abdurakhmonov et al. 2008; Peleg et al. 2008a; Peleg et al. 2008b; 

Jun et al. 2008).  

Linkage disequilibrium (LD) in ICRISAT foxtail millet core collection 

Foxtail millet, as a self-pollinating species, is expected to have a high level of LD (Wang et al. 

2012). Wang et al. (2010) reported the increased level of LD in the domesticated foxtail millet 

(extends to 1 kb), while it decayed rapidly to a negligible level within 150 bp in wild green 

foxtail, suggested that, the increased level of LD in the cultivated foxtail millet was mainly due 

to the change of population size during the domestication process. Wang et al. (2012) reported 

the LD decay of less than 20 cM of genetic distance using SSR markers with 250 foxtail millet 

landraces.  In self-pollinating crops such as barley, LD commonly extends for distances of up to 
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10 cM (Kraakman et al. 2004), and in some Arabidopsis populations, LD exceeds 50 cM 

(Nordborg et al. 2002). LD is high in rice, and LD decay values are 20 to 30 cM (Agrama et al. 

2007). In our study, LD decay of approximately 40 cM of genetic distance was observed, which 

suggests that it could be possible to achieve resolution down to the 40 cM level.  

 The choice of germplasm is a key factor which determines the resolution of AM. The 

core collection, which represents the diversity of the entire collection of that species, would be 

the ideal material for association mapping (Whitt and Buckler 2003). The core collection was 

effectively used as association mapping panel in several crops viz., rice (Borba et al. 2010), 

wheat (Dodig et al. 2012), sorghum (Shehzad et al. 2009; Upadhyaya et al 2012a; Upadhyaya et 

al. 2012b), common bean (Blair et al. 2009) etc. Availability of huge number of molecular 

markers in foxtail millet (Jia et al. 2009; Kumari et al. 2013; Pandey et al. 2013; Muthamilarasan 

et al. 2013) provides an immense applicability in germplasm characterization, phylogenetics, 

gene/quantitative trait loci discovery and comparative mapping. It is now possible to do genome-

wide association mapping. Pandey et al. (2013) identified 28,342 microsatellite repeat-motifs 

spanning 405.3Mb of foxtail millet genome, of the 28,342 microsatellites, 21,294 primer pairs 

were successfully designed, and a total of 15,573 markers were physically mapped on 9 

chromosomes of foxtail millet. Muthamilarasan et al. (2013) developed 5123 intron-length 

polymorphic (IPL) markers of which 4049 were physically mapped onto 9 chromosomes of 

foxtail millet. Jia et al. (2013b) sequenced 916 diverse foxtail millet varieties, identified 2.58 

million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail 

millet genome. Also phenotyped the 916 diverse foxtail millet under five different environments 

and identified 512 loci associated with 47 agronomic traits by genome-wide association studies.  

The phenotypic variations of many complex traits of agronomic importance are 

influenced by genotype and genotype × environment interaction; hence replicated multi-

environment testing is prerequisite and useful for correctly identifying QTLs associated with the 

trait of interest (Tao et al. 2000). This core collection is manageable in size (155 accessions), 

represents diversity of 1,474 foxtail millet accessions, can be extensively evaluated under 

replicated multi-environments for various economically important traits of interest, using 

relatively less resources. Availability of large number molecular markers in foxtail  millet (Jia et 

al. 2009; Kumari et al. 2013; Pandey et al. 2013; Muthamilarasan et al. 2013), can be used to 

identify marker trait association using this core collection as an association panel.  
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Table 1 Molecular diversity of sub-populations detected  by STRUCTURE using 72 SSR markers 

Statistics Overall 

Sub-population (SP) detected by STRUCTURE software 

SP1 SP2 SP3 SP4 

Sample size 155 59 4 7 85 

Total number of alleles 1202 1037 180 185 728 

Average number of alleles per locus 16.69 (4-35)a 14.40 (3-30) 2.50 (1-4) 2.57(1-5) 10.04 (1-23) 

Standard Error (SE) 0.920 0.790 0.080 0.120 0.700 

Shannon’s information index (I) 1.99 (0.78-3.14) 2.14 (0.38-3.25) 0.80 (0-1.21) 0.70 (0-1.55) 1.14 (0-2.28) 

Standard Error (SE) 0.092 0.005 0.037 0.048 0.095 

Gene Diversity 0.73 (0.06-0.95) 0.80 (0.16-0.96) 0.50 (0-0.75) 0.41 (0-0.78) 0.63 (0-0.93) 

Standard Error (SE) 0.026 0.022 0.021 0.027 0.032 

Heterozygosity 0.04 (0-0.22) 0.04 (0-0.25) 0.01 (0-0.25) 0.01 (0-0.33) 0.04 (0-0.26) 

Standard Error (SE) 0.004 0.039 0.007 0.007 0.005 

PICb 0.72 (0.06-0.94) 0.78 (0.15-0.95) 0.43 (0-0.70) 0.36 (0-0.73) 0.61 (0-0.92) 

Population specific alleles number  35 417 13 4 126 

a Values in parenthesis represents range 

b PIC, Polymorphic information content 
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Table 2 Details of the accessions present in each 

subpopulation detected by STRUCTURE analysis 

Country/Subpopulation Race Total 

 Sub Population I : Total 59 accessions  

 

moharia 

(27)
#
 

maxima 

(18) 

indica 

(14)  

Afghanistan 2 - - 2 

China - 5 - 5 

Hungary 1 - - 1 

India 1 3 7 11 

Iran 1 - - 1 

Korea,  - 4 - 4 

Lebanon 3 - - 3 

Malawi - - 1 1 

Nepal - 1 - 1 

Pakistan 2 - - 2 

Russia and CIS 4 2 - 6 

Spain  1 - - 1 

Sri Lanka - - 1 1 

Syria 7 1 3 11 

Taiwan 1 1 1 3 

Turkey 1 1 - 2 

United 

Kingdom - - 1 1 

USA 2 - - 2 

Unknown 1 - - 1 

Sub Population II : Total  4 

accessions    

 

maxima 

(3) 

indica 

 (1) 

moharia 

(0)  

India 1  1 - 2 

Korea 1 - - 1 

Russia and CIS 1 - - 1 

Sub Population III: Total 7 

Genotypes   

 

indica 

(7) 

maxima moharia 

 

India 7 - - 7 

Sub Population IV: Total 85 

accessions    
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indica 

(81) 

moharia 

(2) 

maxima 

(2)  

China 1 - - 1 

Ethiopia 1 - - 1 

India 71 2 1 74  

Kenya 1 - - 1 

Malwi 1 - - 1 

Nepal 0 - 1 1 

Pakistan 1 - - 1 

South Africa 1 - - 1 

Syria 1 - - 1 

USA 3 - - 3 
#
Numbers in parenthesis indicate number of accessions 

in each group 
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Table 3 Pairwise estimates of Nei's genetic distance (GD) and FST among the four 

subpopulations (SP) detected by STRUCTURE 

Subpopulation SP1 SP2 SP3 SP4 

SP1 

 

0.557 0.550 0.300 

SP2 0.126** 

 

1.141 0.842 

SP3 0.172** 0.385** 

 

0.256 

SP4 0.100** 0.248** 0.139** 

 FST estimate appear  below the diagonal (** significant at P≤0.01) and pairwise Nei’s genetic distance appears above the 

diagonal  
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Table 4 Analysis of molecular variance (AMOVA) based on four subpopulations (SP1 

to SP4) detected by STRUCTURE and three races in the foxtail millet core collection  

Source df 

Sum of 

square  

Mean 

sum of 

square 

Estimated 

Variance 

Percentage 

of variation 

(%) 

Based on subpopulations inferred by STRUCTURE  

Among populations 3 1250.3 416.8 11.1 10 

Within population 151 15060.7 99.7 99.7 90 

Total 154 16311.0  110.9  

Based on three races viz., indica, maxima and moharia  

Among populations 2 818.48 409.24 7.81   7 

Within population 152 15495.80 101.95 101.95 93 

Total 154 16314.28  109.75  
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Fig. 1 Rate of change in LnP(D) between successive k (k averaged over the five run). k ranged 

from 2 to 10 

 

Fig. 2 Population structure of foxtail millet core collection based on 72 SSR markers.  Numbers 

in the ‘y’ axis show the subgroup membership and each accession represented by thin vertical 

line, which is partitioned into four colored segments that represent the individual membership to 

the subpopulation. SP denotes subpopulation 
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Fig. 3 Principal coordinate analysis (PCoA) of foxtail millet core collection accessions using 72 

SSR markers based on Nei (1973) distance estimates. PCo1 and PCo2 are the first and the 

second principal coordinates, respectively. Numbers in parentheses refers to the proportion of 

variance explained by the principal coordinate. SP denotes subpopulation.  

a. PCoA: coding based on three biological races 

 

b. PCoA: coding based on four subpopulations identified in STRUCTURE analysis 
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Fig. 4 Neighbor-joining tree based on the simple matching dissimilarity matrix of 72 markers 

genotyped across the foxtail millet core collection. Each color represents the different 

subpopulation (SP) identified in STRUCTURE analysis. Red: SP1, Green: SP2; Black: SP3; Blue: 

SP4.  
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Fig. 5 The pattern of LD for 72 SSR loci indicating correlations of allele frequency (r
2
) value 

against genetic distance (cM) between all loci pairs 

 

 


