4,321 research outputs found

    Mužjaci ribe Poecilia mexicana ne raspoznaju receptivne ženke bez tjelesnog kontakta

    Get PDF
    We investigated the preference of Cave molly males to associate with a receptive or a non-receptive female while body contact was prevented but water-borne cues were allowed to reach the male. Both in light and in darkness, males did not prefer the receptive female. Water-borne chemical cues (pheromones) seem to be absent or they are not detected/used by males, respectively.Istraživali smo način na koji mužjak špiljske ribe Poecilia mexicana odabire receptivnu odnosno nereceptivnu ženku, pri čemu je tjelesni kontakt bio onemogućen, ali su čimbenici nošeni vodom mogli doprijeti do mužjaka. Niti na svjetlu niti u tami mužjaci nisu preferirali receptivne ženke. Proizlazi da vodom nošenih tvari (feromona) nema, ili ih mužjaci ne raspoznaju, odnosno ne koriste

    Prototyping of petalets for the Phase-II Upgrade of the silicon strip tracking detector of the ATLAS Experiment

    Full text link
    In the high luminosity era of the Large Hadron Collider, the HL-LHC, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.Comment: 22 pages for submission for Journal of Instrumentatio

    The HERA-B Ring Imaging Cherenkov Counter

    Full text link
    The HERA-B RICH uses a radiation path length of 2.8 m in C_4F_10 gas and a large 24 square meters spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27000 channels. A 2:1 reducing two-lens telescope in front of each PMT increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the RICH was fully reached: the average number of detected photons in the RICH for a beta=1 particle was found to be 33 with a single hit resolution of 0.7 mrad and 1 mrad in the fine and coarse granularity regions, respectively.Comment: 29 pages, 23 figure

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B

    Full text link
    The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001, Hamburg, German

    A double-sided, shield-less stave prototype for the ATLAS upgrade strip tracker for the high luminosity LHC

    Get PDF
    A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools

    A double-sided silicon micro-strip super-module for the ATLAS inner detector upgrade in the high-luminosity LHC

    Get PDF
    The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail
    corecore