7 research outputs found

    Necrotizing enterocolitis leads to disruption of tight junctions and increase in gut permeability in a mouse model

    Get PDF
    Background: Necrotizing enterocolitis (NEC) is a leading cause of death in preterm infants. Neonates weighing <1500 grams are at the highest risk for acquiring NEC, with a prevalence of nearly 7-10%, mortality up to 30%, and several long-term complications among survivors. Despite advancements in neonatal medicine, this disease remains a challenge to treat. The aim of this study is to investigate the effect of NEC on gut epithelial tight junctions and its barrier function using a NEC mouse model. Methods: Three-day old C57BL/6 mouse pups were fed with Esbilac formula every 3 hours and then subjected to hypoxia twice daily followed by cold stress. Dam fed pups from the same litters served as controls. Pups were observed and sacrificed 96 hours after the treatments and intestines were removed for experiments. The successful induction of NEC was confirmed by histopathology. Changes in tight junction proteins in NEC intestines were studied by western blotting and immunofluorescent microscopy using specific protein markers. The gut leakage in NEC was visualized using biotin tracer molecules. Results: Our study results demonstrate that we induced NEC in >50% of experimental pups, pups lost nearly 40% of weight and their intestines showed gross changes and microscopic changes associated with NEC. There were inflammatory changes with loss of tight junction barrier function and disruption of tight junction claudin proteins in the intestines of NEC mouse model. We have demonstrated for the first time that NEC intestines develop increased leakiness as visualized by biotin tracer leakage. Conclusions: NEC leads to breakdown of epithelial barrier due to changes in tight junction proteins with increased leakiness which may explain the transmigration of microbes and microbial products from the gut lumen into the blood stream leading to sepsis like signs clinically witnessed

    Necrotizing enterocolitis leads to disruption of tight junctions and increase in gut permeability in a mouse model

    No full text
    Abstract Background Necrotizing enterocolitis (NEC) is a leading cause of death in preterm infants. Neonates weighing 50% of experimental pups, pups lost nearly 40% of weight and their intestines showed gross changes and microscopic changes associated with NEC. There were inflammatory changes with loss of tight junction barrier function and disruption of tight junction claudin proteins in the intestines of NEC mouse model. We have demonstrated for the first time that NEC intestines develop increased leakiness as visualized by biotin tracer leakage. Conclusions NEC leads to breakdown of epithelial barrier due to changes in tight junction proteins with increased leakiness which may explain the transmigration of microbes and microbial products from the gut lumen into the blood stream leading to sepsis like signs clinically witnessed

    Necrotizing enterocolitis leads to disruption of tight junctions and increase in gut permeability in a mouse model

    No full text
    Background: Necrotizing enterocolitis (NEC) is a leading cause of death in preterm infants. Neonates weighing 50% of experimental pups, pups lost nearly 40% of weight and their intestines showed gross changes and microscopic changes associated with NEC. There were inflammatory changes with loss of tight junction barrier function and disruption of tight junction claudin proteins in the intestines of NEC mouse model. We have demonstrated for the first time that NEC intestines develop increased leakiness as visualized by biotin tracer leakage.Conclusions: NEC leads to breakdown of epithelial barrier due to changes in tight junction proteins with increased leakiness which may explain the transmigration of microbes and microbial products from the gut lumen into the blood stream leading to sepsis like signs clinically witnessed

    Current Understanding of Transfusion-associated Necrotizing Enterocolitis: Review of Clinical and Experimental Studies and a Call for More Definitive Evidence.

    No full text
    The association between red blood cell (RBC) transfusions and necrotizing enterocolitis (NEC), so-called transfusion-associated NEC (ta-NEC), was first described in 1987. However, further work is needed to confirm a causal relationship, elucidate underlying mechanisms, and develop possible strategies for prevention. We performed an extensive literature search in the databases PubMed, EMBASE, and Scopus. Although multiple retrospective human studies have strongly suggested an association between blood transfusions and subsequent occurrence of NEC, meta-analyses of randomized controlled trials (RCTs) testing RBC transfusion thresholds or the use of recombinant erythropoiesis-stimulating growth factors did not confirm an association of anemia with ta-NEC. These conflicting data necessitated the development of an animal model to elucidate mechanisms and causal factors. Data from this recent mouse model of ta-NEC highlighted the importance of sequential exposure to severe anemia followed by transfusion for development of ta-NEC. This review summarizes current human and experimental data, highlights open questions, and suggests avenues for further research aimed at preventing ta-NEC in preterm infants. Further studies are required to delineate whether there is a tipping point, in terms of the level and duration of anemia, and to develop an effective strategy for blood management and the quality of RBC transfusions.</AbstractText

    Abstract

    No full text
    corecore