14 research outputs found

    Pharmakokinetische Untersuchungen genkorrigierter Hämatopoese in klinischen retroviralen Studien

    Get PDF
    Die somatische Gentherapie mit retroviralen Vektoren konnte erfolgreich zur Behandlung monogenetischer Erbkrankheiten eingesetzt werden. Jedoch traten bereits in 3 klinischen Gentherapiestudien schwerwiegende vektorinduzierte Nebenwirkungen auf. Integrationsstellen (IS)-Analysen erlaubten die Detektion von Integrationen in oder in der Nähe von Protoonkogenen, die zu einer Überexpression der Gene und zur malignen Entartung der betroffenen Zellen führten, an deren Folgen 2 der 7 erkrankten Patienten verstarben. Umfassende Analysen der Vektor-IS und deren Einfluss auf zelluläre biologische Prozesse sind daher von größter Wichtigkeit und können dabei helfen, mögliche Risiken schon frühzeitig auf der molekularen Ebene zu erkennen. Die Bestimmung der IS erfolgte in den untersuchten klinischen Gentherapiestudien mithilfe der linearen amplifikationsmediierten PCR (LAM-PCR). Zur Verbesserung des zugänglichen Anteils der IS wurde ein mathematisches Modell entwickelt, das die genomische Zugänglichkeit von IS in Abhängigkeit der verwendeten Restriktionsenzyme a priori berechnet. Weiterer Bestandteil meiner Arbeit war die Etablierung einer nicht restriktiven (nr) LAM-PCR, die eine IS-Analyse ohne die Verwendung von Restriktionsenzymen ermöglicht. Die im Rahmen dieser Arbeit durchgeführte vergleichende IS-Analyse in Kombination mit der Sanger Sequenzierung von 5 klinischen (2547 IS) und 3 präklinischen (1316 IS) gammaretroviralen Studien zeigte beeindruckende Übereinstimmungen. So wurden über 70% aller IS in genkodierenden Bereichen detektiert mit einer Anhäufung um die Transkriptionsstartstelle (TSS, 23%-39%). Weiterhin konnten wir die Protoonkogene MDS1-EVI1 (108 IS), PRDM16 (37 IS), LMO2 (13 IS), CCND2 (12 IS) und SETBP1 (10 IS) als gemeinsame bevorzugte Integrationsorte beobachten. Ein weiterer Fokus stellten die Klonalitäts- und pharmakokinetischen Analysen der Proben von insgesamt 9 Patienten aus zwei X-CGD, einer ADA-SCID und einer WAS gammaretroviralen Gentherapiestudie dar, die über einen Zeitraum von bis zu 5 Jahren nach Therapie erfolgten. In allen untersuchten Studien zeigte die (nr) LAM-PCR Analyse gefolgt von der Pyrosequenzierung (GS FLX, > 20000 IS) ebenfalls eine nicht zufällige Verteilung mit einer bevorzugten Integration in genkodierenden Bereichen (47%-72%) und einer Anhäufung der IS um die TSS (8%-16%). Weiterhin wurden ebenfalls bevorzugte Integrationsorte in oder in der Nähe der Protoonkogene MDS1-EVI1 (289 IS), PRDM16 (104 IS), LMO2 (52 IS), SETBP1 (34 IS) und CCND2 (33 IS) detektiert. Mittels LAM-PCR „Sequence Count“ Analysen konnte eine vektorinduzierte in vivo Selektion einzelner MDS1-Klone in 3 der insgesamt 4 X-CGD Patienten beobachtet werden. Reverse Transkriptase (RT)-PCR Untersuchungen zur Genexpression in einem X-CGD Patienten zeigten eine Überexpression der von der Integration betroffenen Gene MDS1-EVI1 und STAT3. In den weiteren Patienten der untersuchten Gentherapiestudien verlief die hämatopoetische Repopulation bis zum letzten analysierten Zeitpunkt polyklonal. Allerdings konnten wir auch in der WAS Gentherapiestudie eine in vivo Selektion eines CCND2- und eines MDS1-Klons über „Sequence Count“ Analyse und qPCR nachweisen. Die Klonalitätsanalysen mittels LAM-PCR/nrLAM-PCR und Hochdurchsatzsequenzierung (Pyrosequenzierung, GS FLX) führten zu einer einzigartigen Datensammlung von insgesamt > 20000 IS aus klinischem Patientenmaterial. Unsere Untersuchungen zeigten, dass herkömmliche retrovirale Vektoren mit aktivem LTR einen sehr signifikanten Einfluss auf die zelluläre Genexpression ausüben. Es bleibt längerfristigen Untersuchungen vorbehalten, zu klären, welche biologischen Auswirkungen die retro- und lentiviralen Vektorsysteme mit selbstinaktivierendem (SIN) LTR auf das Schicksal der transduzierten Zelle haben

    Cell Cycle Status of CD34+Hemopoietic Stem Cells Determines Lentiviral Integration in Actively Transcribed and Development-related Genes

    No full text
    Gene therapy utilizing lentiviral-vectors (LVs) is postulated as a dynamic therapeutic alternative for monogenic diseases. However, retroviral gene transfer may cause insertional mutagenesis. Although, such risks had been originally estimated as extremely low, several reports of leukemias or clonal dominance, have led to a re-evaluation of the mechanisms operating in insertional mutagenesis. Therefore, unraveling the mechanism of retroviral integration is mandatory toward safer gene therapy applications. In the present study, we undertook an experimental approach which enabled direct correlation of the cell cycle stage of the target cell with the integration profile of LVs. CD34+ cells arrested at different stages of cell cycle, were transduced with a GFP-LV. LAM-PCR was employed for integration site detection, followed by microarray analysis to correlate transcribed genes with integration sites. The results indicate that similar to 10% of integration events occurred in actively transcribed genes and that the cell cycle stage of target cells affects integration pattern. Specifically, use of thymine promoted a safer profile, since it significantly reduced integration within cell cycle-related genes, while we observed increased possibility for integration into genes related to development, and decreased possibility for integration within cell cycle and cancer-related genes, when transduction occurs during mitosis

    The balance between the intronic miR-342 and its host gene Evl determines hematopoietic cell fate decision

    Full text link
    Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Lin- Sca1+ cKit+ cells drives lymphopoiesis whereas miR-342 OE increases myeloid colony formation in vitro and in vivo, going along with a profound upregulation of canonical pathways essential for B-cell development or myelopoietic functions upon Evl or miR-342 OE, respectively. Strikingly, miR-342 counteracts its host gene by targeting lymphoid signaling pathways, resulting in reduced pre-B-cell output. Moreover, EVL overexpression is associated with lymphoid leukemia in patients. In summary, our data show that one common gene locus regulates distinct hematopoietic differentiation programs depending on the gene product expressed, and that the balance between both may determine hematopoietic cell fate decision

    High-throughput monitoring of integration site clonality in preclinical and clinical gene therapy studies

    No full text
    Gene transfer to hematopoietic stem cells with integrating vectors not only allows sustained correction of monogenic diseases but also tracking of individual clones in vivo. Quantitative real-time PCR (qPCR) has been shown to be an accurate method to quantify individual stem cell clones, yet due to frequently limited amounts of target material (especially in clinical studies), it is not useful for large-scale analyses. To explore whether vector integration site (IS) recovery techniques may be suitable to describe clonal contributions if combined with next-generation sequencing techniques, we designed artificial ISs of different sizes which were mixed to simulate defined clonal situations in clinical settings. We subjected all mixes to either linear amplificationâmediated PCR (LAM-PCR) or nonrestrictive LAM-PCR (nrLAM-PCR), both combined with 454 sequencing. We showed that nrLAM-PCR/454-detected clonality allows estimating qPCR-detected clonality in vitro. We then followed the kinetics of two clones detected in a patient enrolled in a clinical gene therapy trial using both, nrLAM-PCR/454 and qPCR and also saw nrLAM-PCR/454 to correlate to qPCR-measured clonal contributions. The method presented here displays a feasible high-throughput strategy to monitor clonality in clinical gene therapy trials is at hand

    Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia

    No full text
    Recurrent gene mutations contribute to the pathogenesis of chronic lymphocytic leukaemia (CLL). We developed a next-generation sequencing (NGS) platform to determine the genetic profile, intratumoural heterogeneity, and clonal structure of two independent CLL cohorts. TP53, SF3B1, and NOTCH1 were most frequently mutated (16·3%, 16·9%, 10·7%). We found evidence for subclonal mutations in 67·5% of CLL cases with mutations of cancer consensus genes. We observed selection of subclones and found initial evidence for convergent mutations in CLL. Our data suggest that assessment of (sub)clonal structure may need to be integrated into analysis of the mutational profile in CL

    The balance between the intronic miR-342 and its host gene Evl determines hematopoietic cell fate decision

    No full text
    Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Li

    Successful combination of sequential gene therapy and rescue Allo-HSCT in two children with X-CGD - importance of timing

    Full text link
    We report on a series of sequential events leading to long-term survival and cure of pediatric X-linked chronic granulomatous disease (X-CGD) patients after gamma-retroviral gene therapy (GT) and rescue HSCT. Due to therapyrefractory life-threatening infections requiring hematopoietic stem cell transplantation (HSCT) but absence of HLAidentical donors, we treated 2 boys with X-CGD by GT. Following GT both children completely resolved invasive Aspergillus nidulans infections. However, one child developed dual insertional activation of ecotropic viral integration site 1 (EVI1) and signal transducer and activator of transcription 3 (STAT3) genes, leading to myelodysplastic syndrome (MDS) with monosomy 7. Despite resistance to mismatched allo-HSCT with standard myeloablative conditioning, secondary intensified rescue allo-HSCT resulted in 100 % donor chimerism and disappearance of MDS. The other child did not develop MDS despite expansion of a clone with a single insertion in the myelodysplasia syndrome 1 (MDS1) gene and was cured by early standard allo-HSCT. The slowly developing dominance of clones harboring integrations in MDS1-EVI1 may guide clinical intervention strategies, i.e. early rescue allo-HSCT, prior to malignant transformation. GT was essential for both children to survive and to clear therapy-refractory infections, and future GT with safer lentiviral self-inactivated (SIN) vectors may offer a therapeutic alternative for X-CGD patients suffering from life-threatening infections and lacking HLA-identical HSC donors

    Lentiviral Vector Integration Profiles Differ in Rodent Postmitotic Tissues

    No full text
    Lentiviral vectors with self-inactivating (SIN) long terminal repeats (LTRs) are promising for safe and sustained transgene expression in dividing as well as quiescent cells. As genome organization and transcription substantially differs between actively dividing and postmitotic cells in vivo, we hypothesized that genomic vector integration preferences might be distinct between these biological states. We performed integration site (IS) analyses on mouse dividing cells (fibroblasts and hematopoietic progenitor cells (HPCs)) transduced ex vivo and postmitotic cells (eye and brain) transduced in vivo. As expected, integration in dividing cells occurred preferably into gene coding regions. In contrast, postmitotic cells showed a close to random frequency of integration into genes and gene spare long interspersed nuclear elements (LINE). Our studies on the potential mechanisms responsible for the detected differences of lentiviral integration suggest that the lowered expression level of Psip1 reduce the integration frequency in vivo into gene coding regions in postmitotic cells. The motif TGGAA might represent one of the factors for preferred lentiviral integration into mouse and rat Satellite DNA. These observations are highly relevant for the correct assessment of preclinical biosafety studies, indicating that lentiviral vectors are well suited for safe and effective clinical gene transfer into postmitotic tissues
    corecore