43 research outputs found
Sevenfold enhancement on porphyrin dye efficiency by coordination of ruthenium polypyridine complexes
Sevenfold enhancement of photoconversion efficiency was achieved by incorporation of peripheral ruthenium complexes to a porphyrin dye, generating supramolecular effects capable of playing several key roles (e.g., transferring energy to, inhibiting aggregation, and accepting the hole generated in the porphyrin center after electron injection), providing new insights for the design of better DSSC photosensitizers.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq
Supramolecular concepts and interfacial morphology in TiO2 solar cells
Esta tese tem como objetivo contribuir para o conhecimento e desenvolvimento das células solares sensibilizadas por corantes, através da elaboração de novas espécies supramoleculares e de estudos fundamentais de caracterização do filme de TiO2-P25 e da interface TiO2-Corante pela técnica de microscopia Raman confocal. Os estudos de microcopia Raman confocal da distribuição das fases cristalinas rutilo e anatase em filmes de TiO2-P25 (Degussa) mostraram que a fase rutilo está presente em agregados de diferentes tamanhos (de 250 nm a 3 µm) distribuídos na fase anatase e que estes agregados permaneceram mesmo após os processos de preparação da suspensão coloidal. Na presença do corante N3, verificou-se que a irradiação com laser em 532 nm, usando potência acima de 25 mW cm-2, provoca a absorção e posterior combustão do filme interfacial, com drásticas mudanças na morfologia visualizadas por microscopia Raman confocal, revelando a ocorrência da transformação de anatase em rutilo na região de incidência do feixe de laser. Outro ponto investigado nesta tese, foi a síntese e aplicação de novos sensibilizadores supramoleculares em células solares sensibilizadas por corante (DSC), visando diminuir os processos de recombinação e melhor aproveitamento do espectro solar através da estabilização do corante foto-oxidado e da transferência vetorial de elétron/energia. Além dos trabalhos com novas porfirinas supramoleculares, reproduzidas no apêndice, esta tese apresenta um estudo detalhado de uma série, formada por três espécies diméricas, constituídas pelas unidades [Ru(dcbH2)Cl]+ e [Ru(dmb)2Cl]+, unidas por ligantes ponte com dimensões lineares crescentes, isto é: bpy, bpe e bpeb (dcbH2= ácido-2,2\'-bipiridina-4,4\'-dicarboxílico, dmb= 4,4\'-dimetil-2,2\'- bipiridina, bpy= 4,4\'-bipiridina, bpe= trans-1,2-bis(4-piridil)-etileno e bpeb= trans-1,4- bis[2-(piridil)etenil]-benzeno). O rendimento global das DSCs correspondentes cresceram com o aumento do tamanho da ponte, passando de 2,78 % para o corante dim-Ru-bpy, para 2,89 e 3,25 % nos corantes dim-Ru-bpe e dim-Rbpeb, respectivamente. Foi observado que os valores de Jsc e η têm correlação linear com a distância de separação do buraco e da superfície do eletrodo de TiO2, ratificando que o processo de retardação da recombinação de carga, causado pelo aumento da ponte, é um fator muito importante para esta classe de compostos. Os resultados de IPCE mostraram que a unidade [Ru(dmb)2Cl(P)]+ também é responsável pela fotoinjeção de elétrons no TiO2. Assim, a excitação de qualquer uma das unidades, sempre acaba formando a espécie TiO2(e-)-Ru-Ru(h+) no filme interfacial. Os resultados confirmam as expectativas esperadas no planejamento energético vetorial, no qual o HOMO foi centrado na unidade distante da superfície e o LUMO ficou sobre a dcbH2 diretamente ancorada no superfície do TiO2.This thesis encompasses our efforts to improve the knowledge and contribute to the development of dye-sensitized solar cells, by focusing on supramolecular design of new dyes and on critical aspects of the morphology of the TiO2-P25 and TiO2-Dye interfaces, as probed by confocal Raman microscopy. According to Raman imaging of the crystalline phase distribution of TiO2-P25 (Degussa) rutile was present as aggregates of different sizes (from 250 nm to 3 µm) dispersed in the 25 nm anatase powder, persisting even after applying criterious procedures for generating uniform colloidal suspensions. In addition, the irradiation of TiO2-P25 films containing adsorbed N3 dye, using a 532 nm laser (power over to 25 mW cm-2) led to the absorption and instantaneous combustion of the dye, promoting drastic local changes associated with the anatase to rutile conversion. The design and application of new supramolecular sensitizers in DSC has also been pursued, aiming an improvement of efficiency by slowing down the electron-hole recombination process, while enhancing the light harvesting effects in the visible range by means of vectorial electron/energy transfer. Studies concerning another efficient supramolecular porphyrin dye, have also been performed and published (Appendix). As the main subject, a series of dimeric species have been reported. They were based on the [Ru(dcbH2)Cl]+ and [Ru(dmb)2Cl]+ units connected by linear bridging ligands of increasing lengths, such as: bpy, bpe and bpeb (dcbH2= 2,2\'-bipyridine-4,4\'-dicarboxylic acid, dmb= 4,4\'-dimethyl-2,2\'-bipyridine, bpy= 4,4\'-bipyridine, bpe= trans-1,2-bis(4- pyridyl)-ethylene e bpeb= trans-1,4-bis[2-(4-pyridyl)ethenyl]-benzene). The overall yield of the corresponding DSCs increased with the bridging ligand length, from 2.78 % for dim-Ru-bpy, to 2.89 % and 3.25 % for dim-Ru-bpe and dim-Ru-bpeb, respectively. The electrochemical parameters associated with the short circuit current exhibited a linear correlation with the hole separation distance between the TiO2 electrode and the binuclear dye terminal, confirming that the retardation of charge recombination through the increasing distance is indeed a relevant factor for this series of compounds. The IPCE results indicated that the [Ru(dmb)2Cl(P)]+ unit is also involved in electron transfer, such that the dye excitation always leads the TiO2(e-)-Ru-Ru(h+) species. This conclusion confirmed the success of the supramolecular design and vectorial transfer strategy, in which the HOMO center was placed far away from the surface, but in communication with the LUMO center located at the dcbH2 group anchored on TiO2
N3-Dye-Induced Visible Laser Anatase-to-Rutile Phase Transition on Mesoporous TiO(2) Films
Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively.FAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)PETROBRASPETROBRA
Reliable and fast sensor for in vitro evaluation of solar protection factor based on the photobleaching kinetics of a nanocrystalline TiO2/dye UV-dosimeter
A reliable and fast sensor for in vitro evaluation of solar protection factors (SPFs) of cosmetic products, based on the photobleaching kinetics of a nanocrystalline TiO(2)/dye UV-dosimeter, has been devised. The accuracy, robustness and suitability of the new device was demonstrated by the excellent matching of the predicted and the in vivo results up to SPF 70, for four standard samples analyzed in blind. These results strongly suggest that our device can be useful for routine SPF evaluation in laboratories devoted to the development or production of cosmetic formulations, since the conventional in vitro methods tend to exhibit unacceptably high errors above SPF similar to 30 and the conventional in vivo methods tend to be expensive and exceedingly time consuming. (C) 2011 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESPCNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)PETROBRASPETROBRA
Evaluation of Sun Protection Factor of Cosmetic Formulations by a Simple Visual In Vitro Method Mimicking the In Vivo Method
A new concept for in vitro visual evaluation of sun protection factor (SPF) of cosmetic formulations based on a supramolecular ultraviolet (UV) dosimeter was clearly demonstrated. The method closely parallels the method validated for in vivo evaluation and relies on the determination of the slightest perceptible bleaching of an iron-complex dye/nanocrystallinetitanium dioxide interface (UV dosimeter) in combination with an artificial skin substrate simulating the actual human skin in the presence and absence of a cosmetic formulation. The successful evaluation of SPF was ensured by the similarity of the erythema response of our dosimeter and human skin to UV light irradiation. A good linear correlation of in vitro and in vivo data up to SPF 40 confirmed the effectiveness of such a simple, cheap, and fast method. In short, here we unravel a convenient and accessible visual FPS evaluation method that can help improving the control on cosmetic products contributing to the reduction of skin cancer, one of the critical public health issues nowadays. (C) 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:726732, 2012FAPESPFAPESPCNPqCNPqPETROBRASPETROBRA
Accessing the charge separation effects in dye-sensitized solar cells based on a vectorial planning of supramolecular ruthenium dyes
Gold nanoparticles functionalised with Ru-dicarboxybipyridine-trimercaptotriazine: SERS effect and application in plasmonic dye solar cells
N3-Dye-Induced Visible Laser Anatase-to-Rutile Phase Transition on Mesoporous TiO<sub>2</sub> Films
Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO2) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using 1s laser pulses of 25–41 mW/cm2, in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (COx, NOx, and H2O) under a N2 or O2 atmosphere, respectively
