81 research outputs found

    Human Like Adaptation of Force and Impedance in Stable and Unstable Tasks

    Get PDF
    Abstract—This paper presents a novel human-like learning con-troller to interact with unknown environments. Strictly derived from the minimization of instability, motion error, and effort, the controller compensates for the disturbance in the environment in interaction tasks by adapting feedforward force and impedance. In contrast with conventional learning controllers, the new controller can deal with unstable situations that are typical of tool use and gradually acquire a desired stability margin. Simulations show that this controller is a good model of human motor adaptation. Robotic implementations further demonstrate its capabilities to optimally adapt interaction with dynamic environments and humans in joint torque controlled robots and variable impedance actuators, with-out requiring interaction force sensing. Index Terms—Feedforward force, human motor control, impedance, robotic control. I

    Profiling of dynamics in protein–lipid–water systems: a time-resolved fluorescence study of a model membrane protein with the label BADAN at specific membrane depths

    Get PDF
    Profiles of lipid-water bilayer dynamics were determined from picosecond time-resolved fluorescence spectra of membrane-embedded BADAN-labeled M13 coat protein. For this purpose, the protein was labeled at seven key positions. This places the label at well-defined locations from the water phase to the center of the hydrophobic acyl chain region of a phospholipid model membrane, providing us with a nanoscale ruler to map membranes. Analysis of the time-resolved fluorescence spectroscopic data provides the characteristic time constant for the twisting motion of the BADAN label, which is sensitive to the local flexibility of the protein–lipid environment. In addition, we obtain information about the mobility of water molecules at the membrane–water interface. The results provide an unprecedented nanoscale profiling of the dynamics and distribution of water in membrane systems. This information gives clear evidence that the actual barrier of membranes for ions and aqueous solvents is located at the region of carbonyl groups of the acyl chains

    Extracellular NAD and ATP: Partners in immune cell modulation

    Get PDF
    Extracellular NAD and ATP exert multiple, partially overlapping effects on immune cells. Catabolism of both nucleotides by extracellular enzymes keeps extracellular concentrations low under steady-state conditions and generates metabolites that are themselves signal transducers. ATP and its metabolites signal through purinergic P2 and P1 receptors, whereas extracellular NAD exerts its effects by serving as a substrate for ADP-ribosyltransferases (ARTs) and NAD glycohydrolases/ADPR cyclases like CD38 and CD157. Both nucleotides activate the P2X7 purinoceptor, although by different mechanisms and with different characteristics. While ATP activates P2X7 directly as a soluble ligand, activation via NAD occurs by ART-dependent ADP-ribosylation of cell surface proteins, providing an immobilised ligand. P2X7 activation by either route leads to phosphatidylserine exposure, shedding of CD62L, and ultimately to cell death. Activation by ATP requires high micromolar concentrations of nucleotide and is readily reversible, whereas NAD-dependent stimulation begins at low micromolar concentrations and is more stable. Under conditions of cell stress or inflammation, ATP and NAD are released into the extracellular space from intracellular stores by lytic and non-lytic mechanisms, and may serve as ‘danger signals–to alert the immune response to tissue damage. Since ART expression is limited to naïve/resting T cells, P2X7-mediated NAD-induced cell death (NICD) specifically targets this cell population. In inflamed tissue, NICD may inhibit bystander activation of unprimed T cells, reducing the risk of autoimmunity. In draining lymph nodes, NICD may eliminate regulatory T cells or provide space for the preferential expansion of primed cells, and thus help to augment an immune response

    Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation

    Get PDF
    Introduction The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development. Methods We used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays. Results We identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90α, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90α promoted survival in the presence of serum but appeared to have little effect during starvation. Conclusions In addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90α inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90α promotes survival depending on the cellular conditions and state of cellular transformation

    Whole genome sequence analysis of the TALLYHO/Jng mouse

    Get PDF
    Background: The TALLYHO/Jng (TH) mouse is a polygenic model for obesity and type 2 diabetes first described in the literature in 2001. The origin of the TH strain is an outbred colony of the Theiler Original strain and mice derived from this source were selectively bred for male hyperglycemia establishing an inbred strain at The Jackson Laboratory. TH mice manifest many of the disease phenotypes observed in human obesity and type 2 diabetes. Results: We sequenced the whole genome of TH mice maintained at Marshall University to a depth of approximately 64.8X coverage using data from three next generation sequencing runs. Genome-wide, we found approximately 4.31 million homozygous single nucleotide polymorphisms (SNPs) and 1.10 million homozygous small insertions and deletions (indels) of which 98,899 SNPs and 163,720 indels were unique to the TH strain compared to 28 previously sequenced inbred mouse strains. In order to identify potentially clinically-relevant genes, we intersected our list of SNP and indel variants with human orthologous genes in which variants were associated in GWAS studies with obesity, diabetes, and metabolic syndrome, and with genes previously shown to confer a monogenic obesity phenotype in humans, and found several candidate variants that could be functionally tested using TH mice. Further, we filtered our list of variants to those occurring in an obesity quantitative trait locus, tabw2, identified in TH mice and found a missense polymorphism in the Cidec gene and characterized this variant’s effect on protein function. Conclusions: We generated a complete catalog of variants in TH mice using the data from whole genome sequencing. Our findings will facilitate the identification of causal variants that underlie metabolic diseases in TH mice and will enable identification of candidate susceptibility genes for complex human obesity and type 2 diabetes

    Computational Investigation of Acene-Modified Zinc-Porphyrin Based Sensitizers for Dye-Sensitized Solar Cells

    Full text link

    Measurements of biogenic VOC emissions : sampling, analysis and calibration

    No full text
    We describe an experimental sq stem and techniques for sampling and analyzing biogenic emissions of volatile organic compounds (VOC). The system uses a Teflon chamber to enclose a single branch of a tree. Temperature, photosynthetic active radiation (PAR), relative humidity and carbon dioxide concentration are continuously monitored with a time resolution of five minutes. VOCs are sampled on tubes containing solid adsorbents (Tenax TA and Carbotrap) with a time resolution of 1 h. Composition and concentration of VOC emissions are measured with a gas chromatographic system equipped with a flame ionization detector (FID) for quantitative and a mass spectrometer (MS) for qualitative analysis. To calibrate the system, a diffusion source was built to produce standard mixtures of up to 36 different compounds with mixing ratios at low concentrations and high accuracy. The diffusion rates were monitored over 17 months and shelved variations between 0.2 and 7.6% for monoterpenes (expect for alpha -phellandrene, alpha -terpinene and gamma -terpinene) and between 10.6 and 22.6% for sesquiterpenes. FID response factors calculated from calibration measurements were corrected using correction factors based on the effective carbon number concept. The individual response factors of 23 compounds were combined to a mean response factor (RFm) with a value of 23,100 muV s ng(-1) and a standard deviation of 9%. The system described here was used to measure VOC emission rates of Scots pine (Pinus sylvestris) in 1998 and 1999. (C) 2001 Elsevier Science Ltd. All rights reserved

    URI-1 is required for DNA stability in C. elegans.

    Full text link
    Unconventional prefoldin RPB5 interactor (URI), an evolutionary conserved member of the prefoldin family of molecular chaperones, plays a central role in the regulation of nutrient-sensitive, TOR (target-of-rapamycin)-dependent gene expression programs in yeast. Mammalian URI has been shown to associate with key components of the transcriptional machinery, including RPB5, a shared subunit of all three RNA polymerases, the ATPases TIP48 and TIP49, which are present in various chromatin remodeling complexes, and human PAF1 and parafibromin, which are components of a transcription elongation complex. Here, we provide the first functional characterization of a URI-1 homolog in a multicellular organism and show that the C. elegans gene uri-1 is essential for germ cell proliferation. URI-1-deficient cells exhibit cell cycle arrest and display DNA breaks as evidenced by TUNEL staining and the appearance of HUS-1::GFP foci formation. In addition, uri-1(lf) mutants and uri-1(RNAi) worms show a p53-dependent increase in germline apoptosis. Our findings indicate that URI-1 has an important function in the mitotic and meiotic cell cycles. Furthermore, they imply that URI-1 participates in a pathway(s) that is associated with the suppression of endogenous genotoxic DNA damage and highlight a role for URI-1 in the control of genome integrity
    corecore