89 research outputs found
Glacial to Holocene swings of the Australian–Indonesian monsoon
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 4 (2011): 540–544, doi:10.1038/ngeo1209.The Australian-Indonesian monsoon is an important component of the climate system in
the tropical Indo-Pacific region. However, its past variability, relation with northern
and southern high latitude climate and connection to the other Asian monsoon systems
are poorly understood. Here we present high-resolution records of monsoon-controlled
austral winter upwelling during the past 22,000 years, based on planktic foraminiferal
oxygen isotope and faunal composition in a sedimentary archive collected offshore
southern Java. We show that glacial-interglacial variations in the Australian-Indonesian
winter monsoon were in phase with the Indian summer monsoon system, consistent with
their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale
variability of upwelling shares similar sign and timing with upwelling variability in the
Arabian Sea. On the basis of element composition and grain-size distribution as
precipitation-sensitive proxies in the same archive, we infer that (austral) summer
monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years.
Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift
of summer rainfall and a relatively weak Hadley Cell south of the Equator. We suggest
that the Australian-Indonesian summer and winter monsoon variability were closely
linked to summer insolation and abrupt climate changes in the northern hemisphere.This study was funded by the German Bundesministerium fĂĽr
Bildung und Forschung (PABESIA) and the Deutsche Forschungsgemeinschaft (DFG, HE
3412/15-1). DWO’s participation was funded by the U.S. National Science Foundation
Long-term biochemical results after high-dose-rate intensity modulated brachytherapy with external beam radiotherapy for high risk prostate cancer
Abstract Background Biochemical control from series in which radical prostatectomy is performed for patients with unfavorable prostate cancer and/or low dose external beam radiation therapy are given remains suboptimal. The treatment regimen of HDR brachytherapy and external beam radiotherapy is a safe and very effective treatment for patients with high risk localized prostate cancer with excellent biochemical control and low toxicity.</p
Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation
Recent studies have proposed that millennial-scale reorganization of the ocean-atmosphere circulation drives increased upwelling in the Southern Ocean, leading to rising atmospheric carbon dioxide levels and ice age terminations. Southward migration of the global monsoon is thought to link the hemispheres during deglaciation, but vital evidence from the southern sector of the vast Australasian monsoon system is yet to emerge. Here we present a 230thorium-dated stalagmite oxygen isotope record of millennial-scale changes in Australian–Indonesian monsoon rainfall over the last 31,000 years. The record shows that abrupt southward shifts of the Australian–Indonesian monsoon were synchronous with North Atlantic cold intervals 17,600–11,500 years ago. The most prominent southward shift occurred in lock-step with Heinrich Stadial 1 (17,600–14,600 years ago), and rising atmospheric carbon dioxide. Our findings show that millennial-scale climate change was transmitted rapidly across Australasia and lend support to the idea that the 3,000-year-long Heinrich 1 interval could have been critical in driving the last deglaciation
Prognostic factors in prostate cancer
Prognostic factors in organ confined prostate cancer will reflect survival after surgical radical prostatectomy. Gleason score, tumour volume, surgical margins and Ki-67 index have the most significant prognosticators. Also the origins from the transitional zone, p53 status in cancer tissue, stage, and aneuploidy have shown prognostic significance. Progression-associated features include Gleason score, stage, and capsular invasion, but PSA is also highly significant. Progression can also be predicted with biological markers (E-cadherin, microvessel density, and aneuploidy) with high level of significance. Other prognostic features of clinical or PSA-associated progression include age, IGF-1, p27, and Ki-67. In patients who were treated with radiotherapy the survival was potentially predictable with age, race and p53, but available research on other markers is limited. The most significant published survival-associated prognosticators of prostate cancer with extension outside prostate are microvessel density and total blood PSA. However, survival can potentially be predicted by other markers like androgen receptor, and Ki-67-positive cell fraction. In advanced prostate cancer nuclear morphometry and Gleason score are the most highly significant progression-associated prognosticators. In conclusion, Gleason score, capsular invasion, blood PSA, stage, and aneuploidy are the best markers of progression in organ confined disease. Other biological markers are less important. In advanced disease Gleason score and nuclear morphometry can be used as predictors of progression. Compound prognostic factors based on combinations of single prognosticators, or on gene expression profiles (tested by DNA arrays) are promising, but clinically relevant data is still lacking
Earth: Atmospheric Evolution of a Habitable Planet
Our present-day atmosphere is often used as an analog for potentially
habitable exoplanets, but Earth's atmosphere has changed dramatically
throughout its 4.5 billion year history. For example, molecular oxygen is
abundant in the atmosphere today but was absent on the early Earth. Meanwhile,
the physical and chemical evolution of Earth's atmosphere has also resulted in
major swings in surface temperature, at times resulting in extreme glaciation
or warm greenhouse climates. Despite this dynamic and occasionally dramatic
history, the Earth has been persistently habitable--and, in fact,
inhabited--for roughly 4 billion years. Understanding Earth's momentous changes
and its enduring habitability is essential as a guide to the diversity of
habitable planetary environments that may exist beyond our solar system and for
ultimately recognizing spectroscopic fingerprints of life elsewhere in the
Universe. Here, we review long-term trends in the composition of Earth's
atmosphere as it relates to both planetary habitability and inhabitation. We
focus on gases that may serve as habitability markers (CO2, N2) or
biosignatures (CH4, O2), especially as related to the redox evolution of the
atmosphere and the coupled evolution of Earth's climate system. We emphasize
that in the search for Earth-like planets we must be mindful that the example
provided by the modern atmosphere merely represents a single snapshot of
Earth's long-term evolution. In exploring the many former states of our own
planet, we emphasize Earth's atmospheric evolution during the Archean,
Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of
potential atmospheric trajectories into the distant future, many millions to
billions of years from now. All of these 'Alternative Earth' scenarios provide
insight to the potential diversity of Earth-like, habitable, and inhabited
worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook
of Exoplanet
Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography
The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean–atmosphere climate dynamics1. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño–Southern Oscillation2,3, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene
Borneo cave dripwater isotope timeseries resolve the 2009-2012 ENSO cycle
The extent to which changes in El Niño-Southern Oscillation (ENSO) variability have contributed to hydrological changes throughout earth's climate history is poorly constrained by available paleoclimate data. Few records possess the length, resolution, and chronological control to resolve climate variations in the heart of the ENSO region. Results from a recent 5-year daily-resolved timeseries of modern rainfall oyxgen isotopes (delta18O) from northern Borneo -- a region where ENSO has a profound impact on precipitation amount -- show that prominent 6-80/00 interannual rainfall delta18O variations at this site are robustly linked to basin-wide ENSO-driven hydrological changes (Moerman et al., 2013). Thus, stalagmites from Borneo hold immense potential as archives of paleo-ENSO, provided that the large-scale ENSO phenomenon is faithfully translated into dripwater geochemical variations. Here we present the results of a 5-year modern monitoring study of cave dripwater delta18O collected biweekly from three distinct drip sites in northern Borneo caves. All three dripwater delta18O timeseries largely preserve the interannual varability observed in rainfall delta18O, with relatively high delta18O values during the 2009/2010 El Niño event and relatively low delta18O values during the 2010/2011 and 2011/2012 La Niña events. ENSO-related dripwater delta18O variations of up to 50/00 reflect amount-weighted Borneo rainfall delta18O averaged over the preceding 3-9 months. In the case of one drip, however, we find evidence for appreciable contribution from an additional older and well-mixed reservoir with an isotopic composition reflecting mean annual rainfall delta18O, resulting in attenuation of this drip's delta18O signal relative to values predicted by averaged amount-weighted rainfall delta18O alone. These large differences in the amplitude of ENSO-related delta18O variations across our three dripwater timeseries caution against applying a single drip's calibration to stalagmite delta18O records to derive 'absolute' estimates of past precipitation amounts. Our results suggest that ENSO variability has a significant impact on northern Borneo stalagmite delta18O. We demonstrate that changes in ENSO characteristics can drive stalagmite delta18O changes of up to 30/00 on multi-decadal timescales, comparable to the amplitude of recently published stalagmite delta18O reconstructions from our site (Carolin et al., 2013). Overall, this study illustrates the value of monitoring modern water isotope systems to refine and improve interpretations of hydroclimate paleo-proxies
- …