563 research outputs found

    Persistent Decadal-Scale Rainfall Variability in the Tropical South Pacific Convergence Zone Through the Past Six Centuries

    Get PDF
    Modern Pacific decadal variability (PDV) has global impacts; hence records of PDV from the pre-instrumental period are needed to better inform models that are used to project future climate variability. We focus here on reconstructing rainfall in the western tropical Pacific (Solomon Islands; similar to 9.5 degrees S, similar to 160 degrees E), a region directly influenced by PDV, using cave deposits (stalagmite). A relationship is developed between delta O-18 variations in the stalagmite and local rainfall amount to produce a 600 yr record of rainfall variability from the South Pacific Convergence Zone (SPCZ). We present evidence for large (similar to 1.5 m), abrupt, and periodic changes in total annual rainfall amount on decadal to multidecadal timescales since 1423 +/- 5 CE (Common Era) in the Solomon Islands. The timing of the decadal changes in rainfall inferred from the 20th-century portion of the stalagmite delta O-18 record coincides with previously identified decadal shifts in PDV-related Pacific ocean-atmosphere behavior (Clement et al., 2011; Deser et al., 2004). The Solomons record of PDV is not associated with variations in external forcings, but rather results from internal climate variability. The 600 yr Solomon Islands stalagmite delta O-18 record indicates that decadal oscillations in rainfall are a persistent characteristic of SPCZ-related climate variability.Taiwan ROC NSCNTU 101-2116-M-002-009, 102-2116-M-002-016, 101R7625Geological Science

    Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning

    Full text link
    We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure

    Growth and properties of ferromagnetic In(1-x)Mn(x)Sb alloys

    Full text link
    We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy, In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The magnetic properties were investigated by direct magnetization measurements, electrical transport, magnetic circular dichroism, and the magneto-optical Kerr effect. These data clearly indicate that In(1-x)Mn(x)Sb possesses all the attributes of a system with carrier-mediated FM interactions, including well-defined hysteresis loops, a cusp in the temperature dependence of the resistivity, strong negative magnetoresistance, and a large anomalous Hall effect. The Curie temperatures in samples investigated thus far range up to 8.5 K, which are consistent with a mean-field-theory simulation of the carrier-induced ferromagnetism based on the 8-band effective band-orbital method.Comment: Invited talk at 11th International Conference on Narrow Gap Semiconductors, Buffalo, New York, U.S.A., June 16 - 20, 200

    Tight-binding study of interface states in semiconductor heterojunctions

    Full text link
    Localized interface states in abrupt semiconductor heterojunctions are studied within a tight-binding model. The intention is to provide a microscopic foundation for the results of similar studies which were based upon the two-band model within the envelope function approximation. In a two-dimensional description, the tight-binding Hamiltonian is constructed such that the Dirac-like bulk spectrum of the two-band model is recovered in the continuum limit. Localized states in heterojunctions are shown to occur under conditions equivalent to those of the two-band model. In particular, shallow interface states are identified in non-inverted junctions with intersecting bulk dispersion curves. As a specific example, the GaSb-AlSb heterojunction is considered. The matching conditions of the envelope function approximation are analyzed within the tight-binding description.Comment: RevTeX, 11 pages, 3 figures, to appear in Phys. Rev.

    Prediction of Anisotropic Single-Dirac-Cones in Bi1x{}_{1-x}Sbx{}_{x} Thin Films

    Full text link
    The electronic band structures of Bi1x{}_{1-x}Sbx{}_{x} thin films can be varied as a function of temperature, pressure, stoichiometry, film thickness and growth orientation. We here show how different anisotropic single-Dirac-cones can be constructed in a Bi1x{}_{1-x}Sbx{}_{x} thin film for different applications or research purposes. For predicting anisotropic single-Dirac-cones, we have developed an iterative-two-dimensional-two-band model to get a consistent inverse-effective-mass-tensor and band-gap, which can be used in a general two-dimensional system that has a non-parabolic dispersion relation as in a Bi1x{}_{1-x}Sbx{}_{x} thin film system
    corecore