72 research outputs found

    Fast image reconstruction for fluorescence microscopy

    Get PDF
    Real-time image reconstruction is essential for improving the temporal resolution of fluorescence microscopy. A number of unavoidable processes such as, optical aberration, noise and scattering degrade image quality, thereby making image reconstruction an ill-posed problem. Maximum likelihood is an attractive technique for data reconstruction especially when the problem is ill-posed. Iterative nature of the maximum likelihood technique eludes real-time imaging. Here we propose and demonstrate a compute unified device architecture (CUDA) based fast computing engine for real-time 3D fluorescence imaging. A maximum performance boost of 210× is reported. Easy availability of powerful computing engines is a boon and may accelerate to realize real-time 3D fluorescence imaging

    MONOSODIUM GLUTAMATE POTENTIATES THE CONTRACTION OF THE VISCERAL SMOOTH MUSCLE OF DUODENUM BY AUGMENTING THE ACTIVITY OF INTRINSIC CHOLINERGIC EFFERENTS, INDUCING OXIDATIVE STRESS AND PROLIFERATING SMOOTH MUSCLE CELLS

    Get PDF
    Objective: The objective of the present study was to examine the effects of monosodium glutamate (MSG) on the contraction of visceral smooth muscle (VSM) of the duodenum in a rat model to understand the MSG-induced impairment of the function of the small intestine. Methods: Male albino rats of Charles Foster strain were exposed with MSG at three different dosages (632, 1264, and 2528 mg/kg BW/day) for 30-day duration. The records of the contraction of the duodenum were achieved with isotonic transducer (IT-2245) coupled with RMS-Polyrite D by our standard laboratory protocol. Results: We have observed potentiation of contraction of duodenum ex vivo dose-dependently in MSG exposed groups of rats compared to control. Furthermore, the enzymatic activity of acetylcholinesterase (AChE) in VSM tissue homogenate and expression of AChE protein in fixed duodenal muscle cell layers have been decreased in a dosage response manner comparing to control rats. We have found a significant decrease in the activities of some antioxidant enzymes such as Cu-Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-s-transferase, and increase in the level of malondialdehyde in MSG exposed VSM tissue homogenate of the duodenum. We have also observed thickening of muscularis externa layer and increase in the number of muscle cells in circular and longitudinal muscle layers of the duodenal wall in transverse duodenal wall sections stained with eosin-hematoxylin. Conclusion: MSG potentiates the contraction of VSM of duodenum by augmenting the activity of intrinsic cholinergic efferents predominantly, and inducing oxidative stress and proliferating smooth muscle cells

    Human peripheral blood mononuclear cells targeted multidimensional switch for selective detection of HSO3− anion

    Get PDF
    A new ratiometric π-conjugated luminophore with donor-acceptor (D- π- A) network CM {(E)-2-(4-(2-(9-butyl-9H-carbazol-3-yl)vinyl)benzylidine)malononitrile} has been synthesized by malononitrile conjugated carbazole dye with an intervening p-styryl spacer. Here, p-styryl conjugated malononitrile is used as a recognition site for the detection of HSO3− with a fast response time (within 50 s). In a mixed aqueous solution, CM reacts with HSO3− to give a new product 1-(9-butyl-9H-carbazol-3-yl)-2-(4-(2, 2-dicyanovinyl)phenyl)ethane-1-sulfonic acid. The probe exhibits positive solvatofluorochromism with solid state red fluorescence. The restriction of intermolecular rotation of p-styryl conjugated malononitrile unit enhances the typical solid state fluorescence properties. The probe (CM and its corresponding aldehyde CA) also demonstrates a strong solvent dependence yielding blue to green to pink and even red fluorescence in commonly used organic solvents like n-hexane, toluene, diethyl ether (DEE), THF, DCM, Dioxane, CH3CN and MeOH. The chemodosimetric approach of HSO3− selectively takes place at the olefinic carbon exhibiting a prominent chromogenic as well as ratiometric fluorescence change with a 147 nm blue-shift in the fluorescence spectrum. CM can detect HSO3− as low as 1.21 × 10−8 M. Moreover, the CM can be successfully applied to detect intrinsically generated intracellular HSO3− in human peripheral blood mononuclear cells (PBMCs). CM has shown sharp intensities (2628 ± 511.8) when the cells are HSO3− untreated. At green channel (at 486 nm) almost negligible fluorescence intensities are found (423 ± 127.5) for HSO3− untreated samples. However, the green fluorescence (2863 ± 427.5) increases significantly (p < 0.05), and simultaneously the red fluorescence gets significantly (p < 0.05) diminished (515 ± 113.2) after addition of HSO3−. The CM has been effectively utilized for evaluating the bisulfite ions in food samples as well. The concentrations of HSO3− in diluted sugar samples have been determined with the recovery of 97.6–9.12%

    Temporal Resolution in Fluorescence Imaging

    Get PDF
    Temporal resolution is a key factor for imaging rapidly occurring events in biology. In this feature article, I investigate an approximate estimate for determining the temporal resolution limit. The condition that led to this limit is, the time taken by the ensemble (99.9 %) of excited molecules to relax to ground state, assuming all the emitted photons are detected. In a simplistic three-level system, the temporal resolution is, approx 3tau_p, where tau_p = (log_e{10})/(k_f +k_{nr}) and, k_f and k_{nr} are respectively the radiative and non-radiative emission rates. This further assumes the ideal condition that, the quantum efficiency of the detector is unity and there are no other loses. We discuss few state-of-art microscopy techniques that are capable of high temporal resolution. This includes techniques such as multifocal multiphoton microscopy (MMM), multifocal plane microscopy, multiple excitation spot optical microscopy (MESO), multiplane microscopy and multiple light-sheet microscopy (MLSM)
    corecore