228 research outputs found

    Do agonistic behaviours bias baited remote underwater video surveys of fish?

    Get PDF
    Marine environments require monitoring to determine the effects of impacts such as climate change, coastal development and pollution and also to assess the effectiveness of conservation measures. Marine protected areas (MPAs) are being established globally and require periodic monitoring to determine whether their objectives are being met. Baited underwater video systems are becoming a popular method for monitoring change within protected fish populations, because they are less damaging to habitats than bottom trawling and allow for more statistical powerful comparisons to determine spatial and temporal patterns in the relative abundances, lengths and biomass of demersal and pelagic fishes. However, much remains uncertain about how interactions between the fish and bait and between the fish themselves affect the results obtained. Agonistic behaviours are frequently observed around the bait of the camera and potentially bias fish density estimates by altering the number and size classes seen at cameras. Here we counted the number of agonistic behaviours between pink snappers (Pagrus auratus), the size of fish involved and whether the fish left the field of view following such behaviours. The study consisted of 20 baited underwater video deployments inside a New Zealand marine reserve and 20 in adjacent open areas. We observed a significant relationship between the peak number of fish observed at the camera and the total number of agonistic behaviours, as well as the number of both aggressor and subordinate fish leaving the camera field of view following interactions. The slope of the latter relationship and thus the absolute numbers of fish leaving were higher for subordinate fish. As subordinates were significantly smaller than aggressors, the apparent size frequency distribution is likely skewed away from smaller size classes. The staying time of the fish and thus the maximum number of fish present at the camera will be reduced by agonistic behaviours and the absolute magnitude of this effect appears to be greater at high fish densities. Our results suggest that an overall effect of these phenomena is to underestimate the differences in abundance between MPAs and open areas, but also to overestimate differences in average size

    RGBD-Dog: Predicting Canine Pose from RGBD Sensors

    Get PDF
    The automatic extraction of animal 3D pose from images without markers is of interest in a range of scientific fields. Most work to date predicts animal pose from RGB images, based on 2D labelling of joint positions. However, due to the difficult nature of obtaining training data, no ground truth dataset of 3D animal motion is available to quantitatively evaluate these approaches. In addition, a lack of 3D animal pose data also makes it difficult to train 3D pose-prediction methods in a similar manner to the popular field of body-pose prediction. In our work, we focus on the problem of 3D canine pose estimation from RGBD images, recording a diverse range of dog breeds with several Microsoft Kinect v2s, simultaneously obtaining the 3D ground truth skeleton via a motion capture system. We generate a dataset of synthetic RGBD images from this data. A stacked hourglass network is trained to predict 3D joint locations, which is then constrained using prior models of shape and pose. We evaluate our model on both synthetic and real RGBD images and compare our results to previously published work fitting canine models to images. Finally, despite our training set consisting only of dog data, visual inspection implies that our network can produce good predictions for images of other quadrupeds – e.g. horses or cats – when their pose is similar to that contained in our training set

    Benthic Structure and Pelagic Food Sources Determine Post-settlement Snapper (Chrysophrys auratus) Abundance

    Get PDF
    Nursery habitats provide increased survival and growth and are a crucial early life-stage component for many fish and invertebrate populations. The biogenic structures that provide this nursery function, however, are increasingly degraded. Therefore, any effort to conserve, restore or replace habitat with artificial structure should be guided by an understanding of the value provided by that nursery habitat. Here, we experimentally manipulated structure across a number of sites by inserting pinnind bivalve mimics into the seabed and deploying video cameras to observe the response of post-settlement stage snapper, Chrysophrys auratus (Forster in Bloch and Schneider 1801). We also collected a range of environmental variables across these sites to determine the relative importance to snapper of benthic vs. pelagic productivity. While the abundance of snapper was low, our results demonstrated a strong association to structure relative to control plots. The environmental variable with the highest correlation to snapper abundance was the abundance of zooplankton eaten by snapper. This result was well supported by the dominance of zooplankton over small benthic invertebrates in snapper gut contents, and the weak influence of benthic infauna in our regression models. These regressions also demonstrated that when combined with zooplankton abundance, turbidity had a negative relationship to snapper abundance. This highlights the importance of relatively clear water in estuaries, which allows post-settlement snapper to more efficiently consume the zooplankton that are present in the water column. The third component that post-settlement snapper require is of course the presence of benthic structure. While benthic habitat structure was the strongest factor affecting juvenile snapper abundance, we did not find any correlations to suggest that this importance was related to energetic sheltering and access to locations with high food flux

    Correlated effects of ocean acidification and warming on behavioral and metabolic traits of a large pelagic fish

    Get PDF
    Ocean acidification and warming are co-occurring stressors, yet their effects on early life stages of large pelagic fishes are not well known. Here, we determined the effects of elevated CO2 and temperature at levels projected for the end of the century on activity levels, boldness, and metabolic traits (i.e., oxygen uptake rates) in larval kingfish (Seriola lalandi), a large pelagic fish with a circumglobal distribution. We also examined correlations between these behavioral and physiological traits measured under different treatments. Kingfish were reared from the egg stage to 25 days post-hatch in a full factorial design of ambient and elevated CO2 (~500 µatm and ~1000 µatm) and temperature (21 °C and 25 °C). Activity levels were higher in fish from the elevated temperature treatment compared with fish reared under ambient temperature. However, elevated CO2 did not affect activity, and boldness was not affected by either elevated CO2 or temperature. Both elevated CO2 and temperature resulted in increased resting oxygen uptake rates compared to fish reared under ambient conditions, but neither affected maximum oxygen uptake rates nor aerobic scope. Resting oxygen uptake rates and boldness were negatively correlated under ambient temperature, but positively correlated under elevated temperature. Maximum oxygen uptake rates and boldness were also negatively correlated under ambient temperature. These findings suggest that elevated temperature has a greater impact on behavioral and physiological traits of larval kingfish than elevated CO2. However, elevated CO2 exposure did increase resting oxygen uptake rates and interact with temperature in complex ways. Our results provide novel behavioral and physiological data on the responses of the larval stage of a large pelagic fish to ocean acidification and warming conditions, demonstrate correlations between these traits, and suggest that these correlations could influence the direction and pace of adaptation to global climate change

    Organ health and development in larval kingfish are unaffected by ocean acidification and warming

    Get PDF
    Anthropogenic CO₂ emissions are causing global ocean warming and ocean acidification. The early life stages of some marine fish are vulnerable to elevated ocean temperatures and CO₂ concentrations, with lowered survival and growth rates most frequently documented. Underlying these effects, damage to different organs has been found as a response to elevated CO₂ in larvae of several species of marine fish, yet the combined effects of acidification and warming on organ health are unknown. Yellowtail kingfish, Seriola lalandi, a circumglobal subtropical pelagic fish of high commercial and recreational value, were reared from fertilization under control (21 °C) and elevated (25 °C) temperature conditions fully crossed with control (500 µatm) and elevated (1,000 µatm) pCO₂ conditions. Larvae were sampled at 11 days and 21 days post hatch for histological analysis of the eye, gills, gut, liver, pancreas, kidney and liver. Previous work found elevated temperature, but not elevated CO₂, significantly reduced larval kingfish survival while increasing growth and developmental rate. The current histological analysis aimed to determine whether there were additional sublethal effects on organ condition and development and whether underlying organ damage could be responsible for the documented effects of temperature on survivorship. While damage to different organs was found in a number of larvae, these effects were not related to temperature and/or CO₂ treatment. We conclude that kingfish larvae are generally vulnerable during organogenesis of the digestive system in their early development, but that this will not be exacerbated by near-future ocean warming and acidification

    A baseline method for benchmarking mortality losses in Atlantic salmon (Salmo salar) production

    Get PDF
    On-farm databases provide a large diversity of information regarding fish health and stock performance. Mortality records held in on-farm database are indicators of fish health status and of great interest for studying fish health, such as patterns of diseases. Mortality records from a Scottish Atlantic salmon production database of one company were used to develop a method of benchmarking production losses due to mortality. The records used concerned mortality loss numbers of Atlantic salmon in the seawater phase. The median, 10th and 90th percentiles of mortality were calculated for each week of production from 88 production recorded cycles. These values were used to delimit the range of a standard mortality curve through the production cycle. The effects of the different mortality losses from each cycle on production in terms of costs and time consumed were also described. Likewise, substantial interannual variation in mortality time series is described as well as the mortality variation associated with three diseases (Pancreas Disease, Cardiomyopathy Syndrome and Infectious Pancreatic Necrosis)
    corecore