18 research outputs found

    Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation

    Get PDF
    AbstractPancreatic cancers driven by KRAS mutations require additional mutations for tumor progression. The tumor suppressor FBXW7 is altered in pancreatic cancers, but its contribution to pancreatic tumorigenesis is unknown. To determine potential cooperation between Kras mutation and Fbxw7 inactivation in pancreatic tumorigenesis, we generated P48-Cre;LSL-KrasG12D;Fbxw7fl/fl (KFCfl/fl) compound mice. We found that KFCfl/fl mice displayed accelerated tumorigenesis: all mice succumbed to pancreatic ductal adenocarcinoma (PDA) by 40 days of age, with PDA onset occurring by 2 weeks of age. PDA in KFCfl/fl mice was preceded by earlier onset of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions, and associated with chromosomal instability and the accumulation of Fbxw7 substrates Yes-associated protein (Yap), c-Myc, and Notch. Using KFCfl/fl and FBXW7-deficient human pancreatic cancer cells, we found that Yap silencing attenuated growth promotion by Fbxw7 deletion. Our data demonstrate that Fbxw7 is a potent suppressor of KrasG12D-induced pancreatic tumorigenesis due, at least in part, to negative regulation of Yap

    Mechanism and pharmacological specificity of dUTPase-mediated protection from DNA damage and cytotoxicity in human tumor cells

    Full text link
    Purpose : We have reported previously that the expression of E. coli dUTPase (dutE) can protect HT29 cells from 5-fluorodeoxyuridine (FdUrd)-induced DNA fragmentation and cytotoxicity. In the study reported here, we further characterized the ability of dutE expression in one HT29 clone, dutE7, to alter the effects of treatment with FdUrd and other thymidylate synthase (TS) inhibitors. In addition, we developed two HuTu80 dutE-expressing clones using a pLNCX-dutE retroviral construct and tested their sensitivity to FdUrd-induced DNA fragmentation and cytotoxicity. Methods : Both a dutE retroviral expression system and a dutE antibody were developed to facilitate the generation and screening of dutE-expressing clones. HT29 and HuTu80 clones expressing dutE were tested for drug-induced DNA damage with either alkaline elution or pulsed field gel electrophoresis and drug-induced loss of clonogenicity. Results : Following a 24-h treatment with 100 μ M CB3717 or 500 n M methotrexate (MTX), dutE7 cells were significantly less sensitive to drug-induced loss of clonogenicity than con3 cells. DutE7 cells were also resistant to CB3717-induced DNA fragmentation at 24 h. However, following a 48-h treatment with CB3717 or MTX there was no difference in survival between con3 and dutE7 cells, even though DNA damage was still greatly attenuated in the dutE7 cell line. In addition, expression of dutE in two HuTu80 clones, 80  C and 80  K, did not protect these cells from FdUrd-induced DNA damage or cytotoxicity. Conclusions : We conclude that the role of uracil misincorporation and subsequent DNA damage in cytotoxicity induced by TS inhibitors, in HT29 cells, is time dependent, and that cytotoxicity caused by long-term exposure to these drugs is largely independent of resultant DNA damage, in this cell line. The inability of dutE to protect HuTu80 cells from FdUrd further suggests that the significance of uracil misincorporation resulting from TS inhibition varies among cell lines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42098/1/280-42-5-357_80420357.pd

    Sensitization of Pancreatic Cancer Stem Cells to Gemcitabine by Chk1 Inhibition

    Get PDF
    Checkpoint kinase 1 (Chk1) inhibition sensitizes pancreatic cancer cells and tumors to gemcitabine. We hypothesized that Chk1 inhibition would sensitize pancreatic cancer stem cells to gemcitabine. We tested this hypothesis by using two patient-derived xenograft models (designated J and F) and the pancreatic cancer stem cell markers CD24, CD44, and ESA. We determined the percentage of marker-positive cells and their tumor-initiating capacity (by limiting dilution assays) after treatment with gemcitabine and the Chk1 inhibitor, AZD7762. We found that marker-positive cells were significantly reduced by the combination of gemcitabine and AZD7762. In addition, secondary tumor initiation was significantly delayed in response to primary tumor treatment with gemcitabine + AZD7762 compared with control, gemcitabine, or AZD7762 alone. Furthermore, for the same number of stem cells implanted from gemcitabine- versus gemcitabine + AZD7762-treated primary tumors, secondary tumor initiation at 10 weeks was 83% versus 43%, respectively. We also found that pS345 Chk1, which is a measure of DNA damage, was induced in marker-positive cells but not in the marker-negative cells. These data demonstrate that Chk1 inhibition in combination with gemcitabine reduces both the percentage and the tumor-initiating capacity of pancreatic cancer stem cells. Furthermore, the finding that the Chk1-mediated DNA damage response was greater in stem cells than in non-stem cells suggests that Chk1 inhibition may selectively sensitize pancreatic cancer stem cells to gemcitabine, thus making Chk1 a potential therapeutic target for improving pancreatic cancer therapy

    The contribution of DNA replication stress marked by high-intensity, pan-nuclear γH2AX staining to chemosensitization by CHK1 and WEE1 inhibitors

    No full text
    <p>Small molecule inhibitors of the checkpoint proteins CHK1 and WEE1 are currently in clinical development in combination with the antimetabolite gemcitabine. It is unclear, however, if there is a therapeutic advantage to CHK1 vs. WEE1 inhibition for chemosensitization. The goals of this study were to directly compare the relative efficacies of the CHK1 inhibitor MK8776 and the WEE1 inhibitor AZD1775 to sensitize pancreatic cancer cell lines to gemcitabine and to identify pharmacodynamic biomarkers predictive of chemosensitization. Cells treated with gemcitabine and either MK8776 or AZD1775 were first assessed for clonogenic survival. With the exception of the homologous recombination-defective Capan1 cells, which were relatively insensitive to MK8776, we found that these cell lines were similarly sensitized to gemcitabine by CHK1 or WEE1 inhibition. The abilities of either the CDK1/2 inhibitor roscovitine or exogenous nucleosides to prevent MK8776 or AZD1775-mediated chemosensitization, however, were both inhibitor-dependent and variable among cell lines. Given the importance of DNA replication stress to gemcitabine chemosensitization, we next assessed high-intensity, pan-nuclear γH2AX staining as a pharmacodynamic marker for sensitization. In contrast to total γH2AX, aberrant mitotic entry or sub-G1 DNA content, high-intensity γH2AX staining correlated with chemosensitization by either MK8776 or AZD1775 (R<sup>2</sup> 0.83 – 0.53). In summary, we found that MK8776 and AZD1775 sensitize to gemcitabine with similar efficacy. Furthermore, our results suggest that the effects of CHK1 and WEE1 inhibition on gemcitabine-mediated replication stress best predict chemosensitization and support the use of high-intensity or pan-nuclear γH2AX staining as a marker for therapeutic response.</p

    Sensitization of Pancreatic Cancers to Gemcitabine Chemoradiation by WEE1 Kinase Inhibition Depends on Homologous Recombination Repair

    Get PDF
    To improve the efficacy of chemoradiation therapy for locally advanced pancreatic cancer and begin to establish patient selection criteria, we investigated the combination of the WEE1 inhibitor AZD1775 with gemcitabine-radiation in homologous recombination (HR) repair proficient and deficient pancreatic cancers. Sensitization to gemcitabine-radiation by AZD1775 was assessed in pancreatic cancer cells by clonogenic survival and in patient-derived xenografts by tumor growth. The contributions of HR repair inhibition and G2 checkpoint abrogation to sensitization were assessed by γH2AX, BRCA2 manipulation, and RAD51 focus formation and pHistone H3 flow cytometry, respectively. We found that AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type but not BRCA2 mutant pancreatic cancer cells. In all cells, AZD1775 caused inhibition of CDK1 phosphorylation and G2 checkpoint abrogation. However, sensitization by AZD1775 was associated with persistent γH2AX and inhibition of RAD51 focus formation. In HR-proficient (BRCA2 wild-type) or -deficient (BRAC2 null) isogenic cells, AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type, but not in BRCA2 null cells, despite significant G2 checkpoint abrogation. In patient-derived pancreatic tumor xenografts, AZD1775 significantly inhibited tumor growth and impaired RAD51 focus formation in response to gemcitabine-radiation. In conclusion, WEE1 inhibition by AZD1775 is an effective strategy for sensitizing pancreatic cancers to gemcitabine chemoradiation. Although this sensitization is accompanied by inhibition of CDK1 phosphorylation and G2 checkpoint abrogation, this mechanism is not sufficient for sensitization. Our findings demonstrate that sensitization to chemoradiation by WEE1 inhibition results from inhibition of HR repair and suggest that patient tumors without underlying HR defects would benefit most from this therapy

    Cytidine Deaminase APOBEC3A Regulates PD-L1 Expression in Cancer Cells in a JNK/c-JUN-Dependent Manner

    No full text
    Programmed death-ligand 1 (PD-L1) promotes tumor immune evasion by engaging the PD-1 receptor and inhibiting T-cell activity. While the regulation of PD-L1 expression is not fully understood, its expression is associated with tumor mutational burden and response to immune checkpoint therapy. Here, we report that Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) is an important regulator of PD-L1 expression. Using an APOBEC3A inducible expression system as well as siRNA against endogenous APOBEC3A, we found that APOBEC3A regulates PD-L1 mRNA and protein levels as well as PD-L1 cell surface expression in cancer. Mechanistically, APOBEC3A-induced PD-L1 expression was dependent on APOBEC3A catalytic activity as catalytically dead APOBEC3A mutant (E72A) failed to induce PD-L1 expression. Furthermore, APOBEC3A-induced PD-L1 expression was dependent on replication-associated DNA damage and JNK/c-JUN signaling but not interferon signaling. In addition, we confirmed the relevance of these finding in patient tumors as APOBEC3A expression and mutational signature correlated with PD-L1 expression in multiple patient cancer types. These data provide a novel link between APOBEC3A, its DNA mutagenic activity and PD-L1-mediated antitumoral immunity. This work nominates APOBEC3A as a mechanism of immune evasion and a potential biomarker for the therapeutic efficacy of immune checkpoint blockade. IMPLICATIONS: APOBEC3A catalytic activity induces replication-associated DNA damage to promote PD-L1 expression implying that APOBEC3A-driven mutagenesis represents both a mechanism of tumor immune evasion and a therapeutically targetable vulnerability in cancer cells

    Dissociation of gemcitabine chemosensitization by CHK1 inhibition from cell cycle checkpoint abrogation and aberrant mitotic entry

    No full text
    <p>In order to determine the relative contribution of checkpoint abrogation and subsequent aberrant mitotic entry to gemcitabine chemosensitization by CHK1 inhibition, we established a model utilizing the CDK inhibitors roscovitine or purvalanol A to re-establish cell cycle arrest and prevent aberrant mitotic entry in pancreatic cancer cells treated with gemcitabine and the CHK inhibitor AZD7762. In this study, we report that the extent of aberrant mitotic entry, as determined by flow cytometry for the mitotic marker phospho-Histone H3 (Ser10), did not reflect the relative sensitivities of pancreatic cancer cell lines to gemcitabine chemosensitization by AZD7762. In addition, re-establishing gemcitabine-induced cell cycle arrest either pharmacologically, with roscovitine or purvalanol A, or genetically, with cyclin B1 siRNA, did not inhibit chemosensitization uniformly across the cell lines. Furthermore, we found that AZD7762 augmented high-intensity γH2AX signaling in gemcitabine-treated cells, suggesting the presence of replication stress when CHK1 is inhibited. Finally, the ability of roscovitine to prevent chemosensitization correlated with its ability to inhibit AZD7762-induced high-intensity γH2AX, but not aberrant pHH3, suggesting that the effects of AZD7762 on DNA replication or repair rather than aberrant mitotic entry determine gemcitabine chemosensitization in pancreatic cancer cells.</p
    corecore