54 research outputs found

    Dietary nutrient manipulation to improve the performance and tibia characteristics of broilers fed oak acorn (Quercus Brantii Lindl)

    No full text
    An experiment was conducted to evaluate the effects of dietary nutrients (protein, methionine, and choline) manipulation on the performance and tibia characteristics of broilers fed diets containing 15% oak acorn. A completely randomized design with five treatments and four replicates of 15 chicks each, was used. One group was fed a diet based on corn (without oak acorn) as control and other four groups were fed diets containing oak acorn with one of the following nutrient manipulation: without nutrient manipulation, high level of methionine (100% more than NRC), high level of CP (10% more than NRC), and addition of 0.2% choline. Starter and finisher diets were fed from one to 21 and 22 to 42 d of age, respectively. The results indicated that group fed diet without nutrient manipulation presented higher feed intake and worse feed conversion ratio (p<0.05) compared with the control group throughout the experiment. Elevated levels of methionine, protein, and choline had significant beneficial effects on feed conversion ratio during starter phase. Feeding oak acorn negatively influenced tibia bone characteristics (bone ash and strength) both at 21 and 42 d of age, whereas the supplementation with protein, methionine and choline prevented those negative effects. In conclusion, dietary inclusion of 15% oak acorn had negative effects on broiler performance and tibia characteristics. Detrimental effects of oak acorn, particularly on tibia bone, were reduced or prevented by increasing the dietary levels of choline, methionine, and protein

    Long-term administration of metformin ameliorates age-dependent oxidative stress and cognitive function in rats

    No full text
    Background: Aging is an inevitable physiological process, associated with a decline in cognitive function. Recently, metformin, as the first-line treatment for type II diabetes, has been shown to increase the life expectancy of diabetic patients. Therefore, researchers are paying increasing attention to its anti-aging properties. Oxygen free radicals are responsible for oxidative stress, which is a prominent factor in age-associated diseases. This study aimed to evaluate the effects of long-term administration of metformin on age-dependent oxidative stress and cognitive function. Methods: In this experimental study, 32 normal (nondiabetic) male Wistar rats were randomly assigned into control and metformin groups (n = 16 per group). The metformin group received 100 mg/kg of metformin in drinking water daily for six months. The shuttle box test was used for the passive avoidance task in 24-month-old rats. For the biochemical assay, the total antioxidant capacity (TAC) and malondialdehyde (MDA) level were measured. Nissl and TUNEL staining were also used for histopathological assessments. Data were analyzed using independent t-test. Results: The present findings revealed that metformin significantly reduced the MDA level and increased the TAC in the hippocampus of the metformin group (p < 0.05). The survival of hippocampal CA1 neurons was significantly higher in the metformin group as compared to the control group, while the number of TUNEL-positive neurons decreased significantly (p < 0.05). On the other hand, metformin markedly improved the passive avoidance memory in the metformin group as compared to the control group (p < 0.05). Conclusion: It can be concluded that long-term metformin intake, by modulating the oxidant/antioxidant mechanisms, prevents the loss of hippocampal neurons caused by age-dependent oxidative stress and improves memory. © 202
    corecore