31 research outputs found

    Local pore size correlations determine flow distributions in porous media

    Full text link
    The relationship between the microstructure of a porous medium and the observed flow distribution is still a puzzle. We resolve it with an analytical model, where the local correlations between adjacent pores, which determine the distribution of flows propagated from one pore downstream, predict the flow distribution. Numerical simulations of a two-dimensional porous medium verify the model and clearly show the transition of flow distributions from δ\delta-function-like via Gaussians to exponential with increasing disorder. Comparison to experimental data further verifies our numerical approach.Comment: 5 pages, 3 figures, supplemental materia

    Measurements of the Solid-body Rotation of Anisotropic Particles in 3D Turbulence

    Full text link
    We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from stereoscopic video images of their motion in a turbulent flow between oscillating grids with RλR_\lambda=9191. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, p˙ip˙i\langle \dot{p}_i \dot{p}_i \rangle, confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of crosses with the direction of the solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients of the flow.Comment: 15 pages, 7 figure

    Rotation Rate of Rods in Turbulent Fluid Flow

    Get PDF
    The rotational dynamics of anisotropic particles advected in a turbulent fluid flow are important in many industrial and natural setting. Particle rotations are controlled by small scale properties of turbulence that are nearly universal, and so provide a rich system where experiments can be directly compared with theory and simulations. Here we report the first three-dimensional experimental measurements of the orientation dynamics of rod-like particles as they are advected in a turbulent fluid flow. We also present numerical simulations that show good agreement with the experiments and allow extension to a wide range of particle shapes. Anisotropic tracer particles preferentially sample the flow since their orientations become correlated with the velocity gradient tensor. The rotation rate is heavily influenced by this preferential alignment, and the alignment depends strongly on particle shape

    Assessing Heavy Metal Coagulation in Autopurification at the Estuary of Shafarood River

    Get PDF
    Due to its particular physical and chemical conditions, river estuary can affect the structure and concentration of heavy metals present in river water at the time of mixing freshwater and seawater. The mixing of saline and fresh water plays an essential role in autopurification and sedimentation of heavy metals. In the present study, the autopurification of Cd, Co, Ni, Cr and Pb elements was assessed during mixing of Caspian Sea and Shafarood River freshwater in its estuary under laboratory conditions and through controlled potential reduction, pH, DO, and salinity. The rate of heavy metal flocculation at the estuary was Cd (62.2%

    The Effect of Mesenchymal Stem Cells Derived-Conditioned Media in Combination with Oral Anti-Androgenic Drugs on Male Pattern Baldness: An Animal Study

    Get PDF
    Objective: Androgenetic alopecia (AGA) is a prevalent form of hair loss, mainly caused by follicular sensitivity toandrogens. Despite developing different anti-androgen treatment options, the success rate of these treatments hasbeen limited. Using animal models, this study evaluated the therapeutic effects of umbilical cord (UC) stem cellconditioned media (CM) combined with oral anti-androgens for hair regeneration.Materials and Methods: In this experimental study, Poloxamer 407 (P407) was used as a drug carrier forsubcutaneous testosterone injection. AGA models were treated with oral finasteride, oral flutamide, and CMinjections. Samples were thoroughly evaluated and compared using histological, stereological, and molecularanalyses.Results: Injecting CM-loaded hydrogel alone or combined with oral intake of anti-androgens improved hair regeneration.These treatments could promote hair growth by inducing hair follicles in the anagen stage and shortening the telogenand catagen phases. Furthermore, the combination treatment led to an upregulation of hair induction gene expressionwith a downregulation of inflammation genes.Conclusion: Through a reduction in inflammation, injection of CM-loaded hydrogel alone or combined with oral intakeof anti-androgens induces the hair cell cycle with regeneration in damaged follicles. Hence, this could be a promisingtherapeutic method for AGA patients

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Quantifying Uniform Droplet Formation in Microfluidics Using Variational Mode Decomposition

    No full text
    Using variational mode decomposition, we analyze the signal from velocities at the center of the channel of a microfluidics drop-maker. We simulate the formation of water in oil droplets in a microfluidic device. To compare signals from different drop-makers, we choose the length of the water inlet in one drop-maker to be slightly shorter than the other. This small difference in length leads to the formation of satellite droplets and uncertainty in droplet uniformity in one of the drop-makers. By decomposing the velocity signal into only five intrinsic modes, we can fully separate the oscillatory and noisy parts of the velocity from an underlying average flow at the center of the channel. We show that the fifth intrinsic mode is solely sufficient to identify the uniform droplet formation while the other modes encompass the oscillations and noise. Mono-disperse droplets are formed consistently and as long as the fifth mode is a plateau with a local standard deviation of less than 0.02 for a normalized signal at the channel inlet. Spikes in the fifth mode appear, coinciding with fluctuations in the sizes of droplets. Interestingly, the spikes in the fifth mode indicate non-uniform droplet formation even for the velocities measured upstream in the water inlet in a region far before where droplets form. These results are not sensitive to the spatial resolution of the signal, as we decompose a velocity signal averaged over an area as wide as 40% of the channel width
    corecore