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Rotation and alignment of rods in two-dimensional chaotic flow
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We study the dynamics of rod shaped particles in two-dimensional electromagnetically driven fluid
flows. Two separate types of flows that exhibit chaotic mixing are compared: one with time-periodic
flow and the other with constant forcing but nonperiodic flow. Video particle tracking is used to
make accurate simultaneous measurements of the motion and orientation of rods along with the
carrier fluid velocity field. These measurements allow a detailed comparison of the motion and
orientation of rods with properties of the carrier flow. Measured rod rotation rates are in agreement
with predictions for ellipsoidal particles based on the measured velocity gradients at the center of the
rods. There is little dependence on length for the rods we studied �up to 53% of the length scale of
the forcing�. Rods are found to align weakly with the extensional direction of the strain-rate tensor.
However, the alignment is much stronger with the direction of Lagrangian stretching defined by the
eigenvectors of the Cauchy–Green deformation tensor. A simple model of the stretching process
predicts the degree of alignment of rods with the stretching direction. © 2011 American Institute of
Physics. �doi:10.1063/1.3570526�

I. INTRODUCTION

The transport of particulate material by fluids is a prob-
lem with far-reaching consequences, and thus a long history
of study. When the particles are very small and neutrally
buoyant, they tend to act as Lagrangian tracers and move
with the local fluid velocity. Particles with a density greater
than or less than the carrier fluid, however, tend to show
different dynamics, such as preferential concentration and
clustering in turbulent flow fields.1 Even particles that are
neutrally buoyant can show dynamics different from the un-
derlying flow when they are large compared to the smallest
flow scales, since they filter the flow field in complex
ways.2–4 A large number of papers on particle transport have
focused on the case of spherical particles. In many situations,
however, including fiber processing in the paper industry5

and dynamics of ice in clouds,6–9 the particles are not round.
The case of ellipsoidal particles was first studied by Jeffery10

and Taylor;11 subsequently, Brenner addressed the case of
general particle shape in a series of seminal papers.12–15

Here, we study the motion of rod-like particles experi-
mentally in quasi-two-dimensional flow. We focus on the ro-
tational dynamics, since we expect that spheres and rods will
rotate in qualitatively different fashions. As long as the Rey-
nolds number at the particle scale is small �so that the local
flow is well approximated by a Stokes flow�, spheres will

rotate with an angular velocity �̇ given by half the flow vor-
ticity �. An anisotropic particle, however, will also couple
with the strain-rate. In a two-dimensional �2D� Stokes flow
with uniform velocity gradients, the rotation rate of an ellip-
soid is given by5,12–15

�̇ =
1

2
�� + �1 − �2

1 + �2��sin�2��� �ux

�x
−

�uy

�y
� − cos�2��

�� �uy

�x
+

�ux

�y
�		 , �1�

where � is the inclination of the rod with respect to a fixed
axis, � is the aspect ratio of the ellipsoid, and u is the fluid
velocity. If the velocity gradient changes in space, Eq. �1� is
still the first term in a series expansion in higher spatial de-
rivatives of the velocity. The coefficient of the strain-rate
portion of the equation is the eccentricity of the ellipsoid,
and is constrained to lie between zero �for spheres� and one
�for lines�. Even though the right circular cylinders we study
have sharp corners when compared with ideal ellipsoids, we
expect any correction terms to Eq. �1� to be negligible at this
order of approximation, and our measurements confirm this.

These insights about how rods couple to strain-rate and
vorticity have been extended in many different directions by
recent work. Analytic studies of rod motion in flows with
uniform velocity gradients have explored Jeffery orbits and
deviations from them due to walls and fluid inertia.16,17 Szeri
et al.18–21 developed analytical techniques to identify pattern
formation in the orientation distribution of suspended micro-
structures in simple flows. In the more complex chaotic
flows of interest here, the orientation dynamics become non-
integrable and the velocity gradients often change apprecia-
bly over the length of a particle. Models of the dynamics of
thin rods in turbulent flows have been developed;5 however,
instantaneous flow fields are required to determine rod tra-
jectories. In the limit of small rods with high aspect ratio, the
rods approximate material lines, and one can use theoretical
techniques developed for studying the evolution of material
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lines in turbulence22,23 to study the motion of rods.
Numerical simulations provide access to the motion of

the particles along with the velocity of the carrier flow and
allow detailed study of the motion of particles in complex
flows;24–27 however, they must either use a drag model for
the particle fluid interactions or fully resolve the particle
boundary layer. Experimental studies have not been able to
access both rod motion and the full fluid velocity field in
flows more complex than uniform velocity gradients. Several
groups have studied orientation dynamics in flows with uni-
form velocity gradients, where the effects of inertia,28 aspect
ratio, and distance from solid boundaries29,30 have been in-
vestigated. In more complex flows, the rotational
diffusivity31 and orientation distribution in laboratory
coordinates32,33 have been measured.

In our experiments, we have access to high-resolution
time-dependent velocity fields, allowing us to characterize
both the Lagrangian and Eulerian flow dynamics. We can
therefore directly compare the orientation of the rods with
properties of the carrier flow. Below, we first study the align-
ment of rods with the strain-rate tensor �sij =1 /2��ui /�xj

+�uj /�xi�� measured at the position of the rod, and subse-
quently consider alignment with the Lagrangian history of
the velocity gradients, defined by the Cauchy–Green defor-
mation tensors.

To quantify the Cauchy–Green deformation tensors, we
use the flow map �� �x� , t0 ,�t�, which specifies the position at
time t0+�t of a fluid element that was located at position x� at
time t0; see Fig. 1. The deformation gradient tensor Fij

= ���i /�xj� characterizes the deformation of a fluid element
by the flow map. Since Fij is not necessarily symmetric, its
eigenvalues may not be purely real. We therefore use the left
and right Cauchy–Green deformation tensors,34 which are
the two possible symmetric inner products of Fij with itself,

Cij
�L� = FFT =

��i

�xk

�� j

�xk
, �2a�

Cij
�R� = FTF =

��k

�xi

��k

�xj
. �2b�

The eigenvalues of Cij
�L� are the same as the eigenvalues of

Cij
�R�, which are real and positive. The square root of the

maximum eigenvalue gives the stretching that the fluid ele-
ment has experienced over the time �t. To visualize this
process, consider a fluid element that is initially circular and
is stretched into an ellipse by the flow, as in Fig. 1. The
stretching is the ratio of the semimajor axis of the ellipse to
the radius of the circle. The spatial distribution of stretching
in fluid flows is closely related to the finite time Lyapunov
exponents, and is used to define Lagrangian coherent
structures.35–38

Even though the eigenvalues of the two Cauchy–Green
tensors are identical, the eigenvectors are in general not par-
allel. As shown in Fig. 1, the eigenvectors of the left
Cauchy–Green tensor, Cij

�L�, indicate the direction of stretch-
ing in a coordinate system aligned with the fluid element at
time t0+�t, so that the eigenvectors give the directions of the
principal axes of the ellipse after stretching. The eigenvec-
tors of the right Cauchy–Green tensor, Cij

�R�, on the other
hand, indicate the direction of stretching in a coordinate sys-
tem aligned with the fluid element at time t0, so that material
lines initially aligned with the right eigenvectors will end up
aligned with one of the principal axes of the ellipse after
stretching. We will denote the eigenvector corresponding to
the maximum �extensional� eigenvalue of the right Cauchy–
Green deformation tensor as ê1R, and the left Cauchy–Green
tensor as ê1L.

This method is somewhat different from methods used
by Szeri et al.20,21 and Wilkinson et al.27 in their extensive
analysis of the patterns formed by the orientation of rods
advected in fluid flows. They compared the orientation of
rods with the direction defined by the eigenvector of the
deformation gradient tensor. As mentioned earlier, the eigen-
values of this tensor may be complex numbers in contrast to
the eigenvalues of the Cauchy–Green deformation tensor. In
simulations of random flow,27 it has been shown that rods
will be asymptotically oriented in the direction of the eigen-
vector corresponding with the largest eigenvalue of the de-
formation gradient tensor. They also show that regions of
complex eigenvalues exist at short times, but disappear at
longer integration times. We find the method based on the
Cauchy–Green deformation tensors to be more useful for
analysis of the experimental trajectories that are limited to
relatively short times �typically a few inverse Lyapunov ex-
ponents�, where the deformation gradient often has complex
eigenvalues.

In the remainder of this paper, we present the results of
two sets of experiments that measured both the rod motion
and the fluid velocity field that advected the rods. We first
show that the rotation rates of the rods are well described by
Eq. �1�. Next, we consider the alignment of rods with the
strain-rate and the Lagrangian stretching, and find that rods
align more strongly with the stretching. Finally, we develop a
simple model of the degree of alignment of rods with the
stretching experienced by the fluid.

II. EXPERIMENTAL METHODS

We study the motion of anisotropic particles �right cir-
cular cylinders� in chaotic quasi-two-dimensional fluid flows,
where time-periodic and nonperiodic flows are considered.

Re1̂
Le1̂

)( 0tx
r ),,( 0 ttx ΔΦ

rr

Re2̂ Le2̂

FIG. 1. �Color online� A fluid element at initial position x� at time t0 is
mapped to final position �� after time �t by the flow. The circular fluid
element is also deformed by the flow to an ellipse. The eigenvectors of the
left �ê1L and ê2L� and right �ê1R and ê2R� Cauchy–Green tensors are shown.
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The flows are produced in a shallow electrolytic fluid layer
that is driven electromagnetically using Lorentz forcing.36 A
current �sinusoidal or constant� flows through the fluid layer,
which interacts with the magnetic field provided by an ar-
rangement of permanent magnets located beneath the plane
of the fluid. This results in a body force on the fluid perpen-
dicular to both the current and magnetic field. The Reynolds
number is defined as Re=UL /�, where U is the root mean
square fluid velocity, L is the forcing length scale given by
the typical magnet spacing, and � is the kinematic viscosity
of the fluid. In both types of flows, Re was moderate
�95	Re	187�, but somewhat smaller in the periodic case
�Re=95�.

The periodic and nonperiodic flows were measured in
separate but similar apparatuses.39 In both cases, we use par-
ticle tracking methods to determine the trajectories and ori-
entations of the rods. The time-resolved fluid velocity fields
are also measured by tracking the motion of small tracer
particles advected by the flow. Unlike the time-periodic flow,
characterization of the rod and fluid motion must be per-
formed simultaneously in the nonperiodic case. This presents
some interesting technical challenges described briefly below
and in detail elsewhere.3 The electrolyte solutions are chosen
to provide electrical conductivity and to render the rods and
tracer particles neutrally buoyant, which ensures that they
coincide in a single plane of the fluid.

A. Experimental setup: Periodic flow

For the time-periodic flow, the fluid density
�
=1.22 g /cm3, 30% CaCl2 in water� is 1.6% higher than
the rods �
=1.20 g /cm3�, so that the rods float at the upper
surface. The rods are made from fluorescent plastic fiber op-
tic cable �0.5 mm diameter� that is cut to the desired length
�2.5–10 mm�.

The same material is used to make tracer particles �0.5
mm long cylinders�, which ensures that the tracers and rods
float at the same height in the fluid. Ultraviolet lamps are
used for fluorescence excitation. A random arrangement of
permanent magnets with an average spacing of L=1.9 cm is
located beneath the shallow fluid layer �1.7 mm deep, 21
�21 cm wide�. A sinusoidal electric current, with frequency
0.1 Hz �period T=10 s�, travels horizontally through the
fluid, which leads to a time-periodic chaotic flow �Re=95,
U=0.91 cm /s�.

B. Image analysis: Periodic flow

We image a 16�13 cm2 �1280�1024 pixels2� area in
the center of the test section to avoid edge effects. Figure
2�a� shows a typical raw image of 10 mm rods taken at a
frame rate of 40 Hz. Since the flow is time-periodic, the fluid
velocity can be measured separately without the rods present.

For measurement of the fluid velocity field, the flow is
seeded with tracer particles to an average concentration of
230 particles per image, and their motion is tracked over 115
periods resulting in about 27 000 tracer particles per phase.
The center of each tracer particle is measured with an uncer-
tainty less than 
30 �m �0.25 pixel�. The particle velocities
are measured by fitting a polynomial to the particle trajecto-
ries. The fluid velocity field is then extracted from all the
tracer velocities occurring at the same phase by interpolation
onto a square grid of 0.1 cm spacing.

In separate experiments, the rod motion is measured
with a significantly lower particle concentration �10–40 de-
pending on rod length� to avoid particle-particle interactions,
and repeated 70–90 periods for each rod length. To deter-
mine the center and orientation of each rod, we find all bright
pixels corresponding to a single rod. The rod position is de-
termined using the intensity-weighted center-of-mass of the
pixels. A Hough transform gives a first guess for the orien-
tation of the rod. Finally, we use a nonlinear fitting algorithm
to optimize the orientation measurements by minimizing the
difference between an ideal model rod image and the raw
image. Using this method, the orientation of a rod is found to
within �0.017 rad accuracy.

C. Experimental setup: Nonperiodic flow

For chaotic nonperiodic flows, it is necessary to measure
the fluid motion simultaneously with the rod dynamics. To
achieve this, tracer particles are seeded along with the rods at
the interface of a density stratified fluid bilayer.3 The lower
layer is a dense electrolytic solution �17% KCl in water,

=1.11 g /cm3�, the upper fluid layer is deionized water, and
the tracers and rods have an intermediate density
�
p=1.05 g /cm3�. Surface tension interactions between the
particles are eliminated, since the upper and lower fluids are
miscible.40 This allows for much higher tracer seeding as
compared to particle seeding at a free surface. The tracer
particles �80 �m diameter� are significantly smaller than the

a b

1 cm1 cm

FIG. 2. �a� Raw image of 10 mm rods in the periodic
flow; �b� raw image of 10 mm rods along with tracer
particles in the nonperiodic flow.
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rods �1.59 mm diameter, 2.5–10.0 mm long� to achieve suf-
ficient resolution of the fluid velocity field in the vicinity of
a rod.

The fluid layers are each 3.5 mm deep with an area 21
�20 cm2, and a constant current is maintained through the
layer to drive the flow. The magnets are arranged in a square
lattice with alternating poles and a spacing L=2.54 cm.
When driven at a sufficiently high current, the resulting flow
is spatiotemporally chaotic with a Reynolds number in the
range 139	Re	187.

D. Image analysis: Nonperiodic flow

To avoid edge effects, we image an �8.0�8.0 cm2

�600�600 pixels2� region of interest in the center of the
flow cell at a frame rate of 30 Hz. The tracer particles are
imaged using fluorescence, and scattered light is used to im-
age the much larger rods. Each image contains 
15 000 trac-
ers to adequately resolve the flow field, while the rods are
much fewer in number ��10 per image� to avoid particle-
particle interactions.

Figure 2�b� shows a raw image of 10 mm rods along
with the tracer particles, where rods are easily distinguished
from tracers by size. The center and orientation of each rod
are identified by an intensity-weighted moment yielding the
centroid and principal axes of the rod. Tracer particle centers
are detected with subpixel accuracy �
13 �m� by Gaussian
fitting to their diffraction limited images. Both sets of par-
ticles are tracked using a predictive algorithm,41 where in-
stantaneous particle velocities �and angular velocities� are
measured by polynomial fitting to the trajectories. The tracer
particle velocities are bilinearly interpolated to further re-

solve the fluid velocity in the vicinity of each rod �see Ref. 3
for additional details�. This method provides the distinct ad-
vantage of direct measurement of the fluid velocity field si-
multaneously with the anisotropic particle dynamics, which
is essential for nonperiodic flows.

III. RESULTS

A. Rotation rate

Equation �1� shows that the rotation rate of a rod in two
dimensions can be estimated from the carrier fluid velocity
gradient at the center of the rod. Figure 3 shows the mea-
sured rotation rate of several typical rods of different lengths.
Also shown is the predicted rotation rate from Eq. �1� using
experimentally measured velocity gradients at the position of
the rod. The top row data ��a�–�c�� are selected from the
periodic flow and the bottom row ��d�–�f�� are selected from
the nonperiodic flow experiment. Rod length increases from
left to right. We measure the rotation rate of the rods from
polynomial fits to the experimentally measured orientations.

As shown in Fig. 3, the predicted rotation rate is close to
the experimentally measured rotation rate for all rod lengths
we have studied. This may be surprising since our rods have
lengths up to 53% of the length scale of the forcing and
particle Reynolds numbers up to 74 �based on the rod length
and the rms fluid velocity�. Equation �1� gives good predic-
tions despite the fact that the particles do not rigorously sat-
isfy the conditions for which it was derived. The significantly
larger noise in the data for a 2.5 mm rod in the nonperiodic
flow �Fig. 3�d�� is mostly generated by inaccuracy in deter-
mining the exact orientation of short rods. Also, difficulties
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FIG. 3. �Color online� Measured �solid line� and predicted �+� rotation rate vs time for different rod lengths ���a�, �d�� 2.5 mm, ��b�, �e�� 5 mm, ��c�, �f��
10 mm
 in periodic flow �top row� and nonperiodic flow �bottom row�.
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in measuring the velocity gradients in real time contribute to
inaccuracies in the predicted rotation rate. The probability
distribution of the deviation between the predicted rotation
rate and the experimentally measured rotation rate is shown
in Fig. 4. For the periodic flow in Fig. 4�a�, the deviations of
the prediction from measurement are about 20% of the root
mean square rotation rate, and are mostly independent of rod
length. The major contribution to these deviations is inaccu-
racy in determining the exact velocity gradient of the flow at
the center of the rod. The probability distribution in Fig. 4�b�
shows that for 10 mm rods in the nonperiodic flow, the pre-
diction is much closer to the measurement than it is for
shorter rods. The smaller deviation for the long rods is the
result of the smaller uncertainty in determining the orienta-
tion of the longer rods.

B. Alignment of rods with strain-rate

The orientation distribution of rods can be considered
relative to different directions defined by the flow. First, we
will consider alignment with the local strain-rate. Figure 5
shows the probability distribution of angles between the ori-
entation of rods and the extensional direction of the strain-
rate calculated at the center of the rods. This distribution
shows that the rods tend to align with the extensional direc-
tion of the strain-rate, although the alignment is fairly weak.
For the rods studied, the alignment with the strain-rate does
not show significant dependence on rod length.

C. Alignment of rods with stretching

Rods are weakly aligned with the strain-rate in these
flows, but it is really the history of the velocity gradients
along the trajectory of a rod that is responsible for its orien-
tation distribution. As discussed in the introduction, this La-
grangian history of the velocity gradients can be quantified
using the Cauchy–Green deformation tensors. In Fig. 6, we
show snapshots of the past stretching field, defined by the
eigenvalue of the Cauchy–Green deformation tensor at each
spatial point. In both the periodic and nonperiodic flows, the
stretching field has many sharp maxima that are organized
into lines. Superimposed on the stretching fields in Fig. 6, we
show images of 10 mm rods taken at the same time. Anima-
tions of rod motion in time-dependent stretching fields are
available in the enhanced online version of Fig. 6.

The rods are preferentially aligned with the stretching
lines, which indicates the important role of stretching in ori-
enting rods. As in Ref. 36, we calculate stretching by inte-
grating trajectories of virtual particles in measured velocity
fields. The gradients in the definition of the Cauchy–Green
tensors Eq. �2� are evaluated using finite differences of par-
ticle trajectories that are initially very close to each other. A
rescaling method is used to keep the particles close to each
other even as they experience exponential stretching.

In order to quantify the effect of stretching on the orien-
tation of rods, we measure the distribution of angles between
the orientation of each rod and the direction of past stretch-
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between rod orientation and extensional direction of strain-rate. In both
experiments, the PDF shows weak alignment of rods with the strain-rate. �a�
Periodic flow, rod lengths are: � 2.5 mm, � 5 mm, + 7.5 mm, � 10 mm;
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ing, ê1L, at the center of the rod. Figure 7 shows that this
distribution has large probability around zero, indicating that
the rods preferentially align with the past stretching direc-
tion. The alignment is significantly stronger than the align-
ment with the strain-rate direction in Fig. 5. Surprisingly, the
alignment is nearly independent of rod length even though
the longest rods �10 mm� are 53% of the magnet spacing in
the periodic flow experiment and 40% of the magnet spacing
in the nonperiodic flow experiment. Even for these relatively
large rods, there is no measurable effect either from the rods
averaging over the spatially varying velocity field or from
the rotational inertia of the rods. The alignment in the peri-
odic flow is stronger than in the nonperiodic flow. This may
be partly a result of periodicity, but it is also affected by the
larger stretching in the periodic flow for the integration times
chosen. Figure 8 shows the probability distribution of align-
ment of rods with the direction of past stretching for different
integration times. The probability of alignment of rods with
the direction of stretching increases with increasing integra-
tion time. This increase in alignment seems natural, as the bit
of fluid that is accompanying the rod after longer integration
has experienced more stretching. However, at some point the
maximum probability saturates so that further increases in
the integration time do not lead to additional alignment. This
saturation may be a sign of limitations on the accuracy of the
experimental measurements of the stretching direction of the
fluid at the center of the rod. �See appendix�

We have also compared rod orientation in our flows to
the direction defined by the eigenvectors of the deformation
gradient tensor as used in previous studies.20,27 Even after
two periods �20 s� of the time-periodic flow, there are many
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regions with complex eigenvalues. In these regions, the di-
rection of the eigenvector of the deformation gradient is un-
defined, so the method based on the Cauchy–Green deforma-
tion tensors is more useful for comparing the alignment of
rods with the deformation measured in our flows. It would be
interesting for future work to make a more detailed compari-
son of these two methods.

D. Theoretical prediction of alignment of material
lines with stretching direction

Here we use a simple model of deformation to predict
the alignment of material lines due to stretching in our sys-
tem. Some theoretical tools for solving the Fokker–Planck
equation for the orientation distribution of the microstructure
in fluid flows have been developed,42 but we choose to solve
a simple model that clearly reveals the connection of stretch-
ing to the orientation distribution. The effect of flow is to
deform an infinitesimal circle of fluid into an ellipse. The
ratio of the semimajor axis of the ellipse to the radius of the
circle is equal to the stretching that the circle has experi-
enced, which can be measured using the square root of the
maximum eigenvalue of the Cauchy–Green tensor as de-
scribed in Sec. III C. If we consider straight material line
segments through the center of the circle with a known initial
distribution of angles, we can calculate the probability distri-
bution of their angles after being stretched by the flow.

Figure 9�a� shows an initially circular fluid element that
is then transported and stretched by the flow into an ellipse.

In Fig. 9�b�, we show the initial circle in the coordinate sys-
tem aligned with the principal axes of the right Cauchy–
Green tensor. Here, a point on the circle of radius r is given
by the simple parametric equations, x0=r cos��0� and y0

=r sin��0�. After deformation by the flow over some time
interval, the circle becomes an ellipse with the same area. In
general, the flow will have reoriented the ellipse, so in Fig.
9�c� we show the ellipse in the coordinate system defined by
the principal axes of the left Cauchy–Green tensor. By
choosing different coordinate systems in Figs. 9�b� and 9�c�,
we have used the Cauchy–Green tensors to account for rota-
tion, leaving only the effect of stretching. We can map any
point �x0 ,y0� on the circle to the corresponding point �x ,y�
on the ellipse by

x = sx0,

y =
y0

s
,

where s is the stretching.
The angle between the point �x ,y� and the semimajor

axis of the ellipse is

� = arctan� y

x
� = arctan� tan��0�

s2 	
so the final and initial angles of any material line through the
center of the material element are related by

tan��� =
1

s2 tan��0� . �3�

The number of lines in a range d� is given by the num-
ber of lines that are mapped to this range from the initial
distribution, so the probability distribution of angles, P���, is
related to the initial distribution, P0��0�, by

P���d� = P0��0�d�0.

From Eq. �3�, the differentials are related by

d�0

d�
=

d

d�
�arctan�s2 tan����
 =

1

s2 sin2��� +
cos2���

s2

,

so the final distribution of angles in range d� for a given
value of stretching, s, is

P���d� =
P0�arctan�s2 tan����
d�

s2 sin2��� +
cos2���

s2

. �4�

Equation �4� implies that the final distribution of angles
depends on the initial distribution P0��0� and the amount of
stretching, s, that the material lines have experienced. If rods
rotate as material lines, we can use this theory to predict the
final distribution of orientations of rods.

Rods in different regions of the flow experience different
values of stretching. The probability distribution of orienta-
tions of rods is the sum over all stretching values weighted
by the probability density of any particular value of stretch-
ing P�s�,
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FIG. 9. �Color online� �a� Deformation of a circular fluid element into an
ellipse by the flow. �b� Initial circle in the coordinate system aligned with
the principal axes of the right Cauchy–Green deformation tensor. �c� Final
ellipse in the coordinate system aligned with the principal axes of the left
Cauchy–Green deformation tensor.
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P���d� =� P�s�ds
P0�arctan�s2 tan����
d�

s2 sin��� +
cos2���

s2

. �5�

The stretching distribution P�s� is measured from all rod
positions to account for their sampling of the flow, and we
further condition P0��0� on values of stretching s.

To compare our measured orientation distributions with
the prediction in Eq. �5�, we need to know the PDF of initial
orientations of rods, P0��0�. Figure 10 shows this initial
probability distribution from our experimental measure-
ments, where �0 is the angle between rod orientation and the
extensional eigenvector of the right Cauchy–Green deforma-
tion tensor, ê1R. Rods show weak alignment with the direc-
tion of future stretching, ê1R. One might expect that there
would be no alignment with the stretching that the rod will
experience in the future, but we find a weak alignment,
which can be understood as a result of the time correlation of
the velocity gradients of the flow.

From the measured initial distribution of rod orientation
in Fig. 10, we can calculate the final probability distribution
of orientation of rods using Eq. �5�. Figure 11 compares this
theoretical prediction of the final distribution of rod orienta-
tion with our measurements from the periodic flow �Fig. 8�
for four different integration times. Both the predicted and
measured distributions give angles measured from the exten-
sional eigenvector of the left Cauchy–Green tensor, ê1L. The
predicted distribution shows alignment with the direction of
stretching in fairly good agreement with our measurements;
however, the theory predicts somewhat stronger alignment
than is observed. The deviation is largest for long integration
times where the theory predicts that material lines are
strongly aligned by the stretching to produce a sharp peak
near zero in Fig. 11�d�. Inaccuracies in our measured velocity
fields may lead to slightly inaccurate measurements of the
stretching direction. These inaccuracies would have the larg-
est effect in regions with nearly perfect alignment leading to

smaller probability in the experimental distribution near
�=0. Another factor could be that rods are not material lines.
Either their length or aspect ratio could cause the measured
alignment to differ from the prediction for material lines.
However, the lack of rod length dependence in the alignment
distribution �see Fig. 7� suggests that this is not a large
effect.
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FIG. 10. �Color online� Experimental PDF of initial orientations of rods
with respect to the extensional eigenvector of the right Cauchy–Green de-
formation tensor. Results are shown for 10 mm rods in the periodic flow for
four different integration times, �t= � T /16, + T /8, � T /4, � T /2. Be-
cause the right Cauchy–Green deformation tensor changes with integration
time, this distribution has a weak integration time dependence even though
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IV. CONCLUSIONS

Simultaneous measurements of rod motion and the ve-
locity field advecting the rods provide a powerful new tool
for understanding particles in complex flows. We have devel-
oped methods for making these measurements in two types
of flows: periodic and nonperiodic. Particularly important is
the development of techniques for simultaneously extracting
the rod and fluid motion in the nonperiodic flow. The mea-
sured rotation rates of rods show good agreement with the
rotation rate predicted for ellipsoidal particles without inertia
in a flow with uniform velocity gradient, even for the longest
rods studied.

We find that rods align weakly with the extensional di-
rection of strain-rate; however, the alignment with the eigen-
vectors of the Cauchy–Green deformation tensor is much
stronger. In both periodic and nonperiodic flows, the align-
ment of rods with the direction of the Cauchy–Green defor-
mation tensor is almost independent of rod length, even
though the rods extend to 53% of periodic flow length scale
and 40% of nonperiodic flow length scale. We developed a
simple model to predict the alignment of rods with the direc-
tion of stretching based on the assumption that rods rotate as
material lines. The model captures the main features of the
alignment distributions, but predicts a slightly stronger align-
ment than the experimental measurements show.
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APPENDIX: EFFECTS OF DEVIATIONS BETWEEN
INTEGRATED TRAJECTORIES AND FLUID
TRAJECTORIES

At longer integration times in these chaotic flows, small
inaccuracies in the velocity field can lead to large deviations
between virtual particle trajectories and the trajectories of the
rods. We can correct for the deviations of virtual particle
trajectories from rods by forcing the center of a group of
virtual particles to follow the center of a rod. This way, we
are sampling the same stretching that the rod has experi-
enced. Figure 12 shows the effect of forcing the virtual par-
ticles to follow the rods on the probability distribution of
alignment of rods with the direction of past stretching. The
distribution in Fig. 12�a� shows that the benefit of forcing the
virtual particles to follow the rods is quite small. However, if
we only look at rods that experience large stretching �Fig.
12�b��, the effect of forcing the virtual particles to follow the
rods is to create a significantly stronger alignment. We con-
clude that integration errors can have some effect in regions
of large stretching, but the overall effect on the orientation
distributions we measure is not significant. We also per-
formed this analysis on the data from the nonperiodic experi-
ment. Here, forcing the particles to follow the rods led to
somewhat worse alignment in some cases. We interpret this
as a result of the fact that in the nonperiodic experiment,
there can never be velocity tracer particles at the position of

the rods. Forcing the virtual particles to follow the rods in
this case can force them into regions where the velocity field
is not resolved as accurately.
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