10,805 research outputs found

    Surface Phase Diagrams for Wetting on Heterogenous Substrates

    Full text link
    We propose a simplified description of fluid adsorption on heterogenenous micropatterned substrates. Using this approach, we are able to rederive results obtained earlier using effective interfacial Hamiltonian methods and predict a number of new examples of surface phase behaviour for both singly and periodically striped substrates. In particular, we show that, for a singly striped system, the manner in which the locus of surface unbending phase transitions approaches the pre-wetting line of the infinite pure system, in the limit of large stripe widths, is non-trivial and sensitive to several characteristic lengthscales and competing free-energies. For periodic substrates, we investigate finite-size deviations from Cassie's law for the wetting temperature of the heterogeneous system when the domain sizes are mesoscopic.Comment: 12 pages, 13 figure

    Nuclear data and angular biasing aspects of Monte Carlo shielding calculations for fusion reactors

    Get PDF
    Imperial Users onl

    Droplet shapes on structured substrates and conformal invariance

    Full text link
    We consider the finite-size scaling of equilibrium droplet shapes for fluid adsorption (at bulk two-phase co-existence) on heterogeneous substrates and also in wedge geometries in which only a finite domain ΛA\Lambda_{A} of the substrate is completely wet. For three-dimensional systems with short-ranged forces we use renormalization group ideas to establish that both the shape of the droplet height and the height-height correlations can be understood from the conformal invariance of an appropriate operator. This allows us to predict the explicit scaling form of the droplet height for a number of different domain shapes. For systems with long-ranged forces, conformal invariance is not obeyed but the droplet shape is still shown to exhibit strong scaling behaviour. We argue that droplet formation in heterogeneous wedge geometries also shows a number of different scaling regimes depending on the range of the forces. The conformal invariance of the wedge droplet shape for short-ranged forces is shown explicitly.Comment: 20 pages, 7 figures. (Submitted to J.Phys.:Cond.Mat.

    Interfacial Structural Changes and Singularities in Non-Planar Geometries

    Full text link
    We consider phase coexistence and criticality in a thin-film Ising magnet with opposing surface fields and non-planar (corrugated) walls. We show that the loss of translational invariance has a strong and unexpected non-linear influence on the interface structure and phase diagram. We identify 4 non-thermodynamic singularities where there is a qualitative change in the interface shape. In addition, we establish that at the finite-size critical point, the singularity in the interface shape is characterized by two distint critical exponents in contrast to the planar case (which is characterised by one). Similar effects should be observed for prewetting at a corrugated substrate. Analogy is made with the behaviour of a non-linear forced oscillator showing chaotic dynamics.Comment: 13 pages, 3 figure

    Coupled Fluctuations near Critical Wetting

    Full text link
    Recent work on the complete wetting transition has emphasized the role played by the coupling of fluctuations of the order parameter at the wall and at the depinning fluid interface. Extending this approach to the wetting transition itself we predict a novel crossover effect associated with the decoupling of fluctuations as the temperature is lowered towards the transition temperature T_W. Using this we are able to reanalyse recent Monte-Carlo simulation studies and extract a value \omega(T_W)=0.8 at T_W=0.9T_C in very good agreement with long standing theoretical predictions.Comment: 4 pages, LaTex, 1 postscript figur

    Monte Carlo simulation of a two-field effective Hamiltonian of complete wetting

    Full text link
    Recent work on the complete wetting transition for three dimensional systems with short-ranged forces has emphasized the role played by the coupling of order-parameter fluctuations near the wall and depinning interface. It has been proposed that an effective two-field Hamiltonian, which predicts a renormalisation of the wetting parameter, could explain the controversy between RG analysis of the capillary-wave model and Monte Carlo simulations on the Ising model. In this letter results of extensive Monte Carlo simulations of the two-field model are presented. The results are in agreement with prediction of a renormalized wetting parameter ω\omega .Comment: To appear in Europhysics Letters. Latex file, 6 pages, 2 figure
    corecore