38 research outputs found

    Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium

    Get PDF
    Background: A defining characteristic of the human intestinal epithelium is that it is the most rapidly renewing tissue in the body. However, the processes underlying tissue renewal and the mechanisms that govern their coordination have proved difficult to study in the human gut. Objective: To investigate the regulation of stem cell-driven tissue renewal by canonical Wnt and TGFβ/bone morphogenetic protein (BMP) pathways in the native human colonic epithelium. Design: Intact human colonic crypts were isolated from mucosal tissue samples and placed into 3D culture conditions optimised for steady-state tissue renewal. High affinity mRNA in situ hybridisation and immunohistochemistry were complemented by functional genomic and bioimaging techniques. The effects of signalling pathway modulators on the status of intestinal stem cell biology, crypt cell proliferation, migration, differentiation and shedding were determined. Results: Native human colonic crypts exhibited distinct activation profiles for canonical Wnt, TGFβ and BMP pathways. A population of intestinal LGR5/OLFM4-positive stem/progenitor cells were interspersed between goblet-like cells within the crypt-base. Exogenous and crypt cell-autonomous canonical Wnt signals supported homeostatic intestinal stem/progenitor cell proliferation and were antagonised by TGFβ or BMP pathway activation. Reduced Wnt stimulation impeded crypt cell proliferation, but crypt cell migration and shedding from the crypt surface were unaffected and resulted in diminished crypts. Conclusions: Steady-state tissue renewal in the native human colonic epithelium is dependent on canonical Wnt signals combined with suppressed TGFβ/BMP pathways. Stem/progenitor cell proliferation is uncoupled from crypt cell migration and shedding, and is required to constantly replenish the crypt cell population

    Mineral oil certified reference materials for the determination of polychlorinated biphenyls from the National Metrology Institute of Japan (NMIJ)

    Get PDF
    Four mineral oil certified reference materials (CRMs), NMIJ CRM 7902-a, CRM 7903-a, CRM 7904-a, and CRM 7905-a, have been issued by the National Metrology Institute of Japan, which is part of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), for the determination of polychlorinated biphenyls (PCBs). The raw materials for the CRMs were an insulation oil (CRM 7902-a and CRM 7903-a) and a fuel oil (CRM7904-a and CRM 7905-a). A solution of PCB3, PCB8, and technical PCB products, comprising four types of Kaneclor, was added to the oil matrices. The total PCB concentrations in the PCB-fortified oils (CRM 7902-a and CRM 7904-a) are approximately 6 mg kg−1. In addition, the mineral oils which were not fortified with PCBs were also distributed as CRMs (CRM 7903-a and CRM 7905-a). Characterization of these CRMs was conducted by the NMIJ/AIST, where the mineral oils and the PCB solution were analyzed using multiple analytical methods such as dimethylsulfoxide extraction, normal-phase liquid chromatography, gel permeation chromatography, reversed-phase liquid chromatography, and chromatography using sulfoxide-bonded silica; and/or various capillary columns for gas chromatography, and two ionization modes for mass spectrometry. The target compounds in the mineral oils and those in the PCB solution were determined by one of the primary methods of measurement, isotope dilution–mass spectrometry (ID-MS). Certified values have been provided for 11 PCB congeners (PCB3, 8, 28, 52, 101, 118, 138, 153, 180, 194, and 206) in the CRMs. These CRMs have information values for PCB homologue concentrations determined by using a Japanese official method for determination of PCBs in wastes and densities determined with an oscillational density meter. Because oil samples having arbitrary PCB concentrations between respective property values of the PCB-fortified and nonfortified CRMs can be prepared by gravimetric mixing of the CRM pairs, these CRMs can be used for validation of PCB analyses using various instruments which have different sensitivities
    corecore