43 research outputs found

    Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    Get PDF
    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed

    European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment

    Get PDF
    To develop a European guideline on pharmacologic treatment of Tourette syndrome (TS) the available literature was thoroughly screened and extensively discussed by a working group of the European Society for the Study of Tourette syndrome (ESSTS). Although there are many more studies on pharmacotherapy of TS than on behavioral treatment options, only a limited number of studies meets rigorous quality criteria. Therefore, we have devised a two-stage approach. First, we present the highest level of evidence by reporting the findings of existing Cochrane reviews in this field. Subsequently, we provide the first comprehensive overview of all reports on pharmacological treatment options for TS through a MEDLINE, PubMed, and EMBASE search for all studies that document the effect of pharmacological treatment of TS and other tic disorders between 1970 and November 2010. We present a summary of the current consensus on pharmacological treatment options for TS in Europe to guide the clinician in daily practice. This summary is, however, rather a status quo of a clinically helpful but merely low evidence guideline, mainly driven by expert experience and opinion, since rigorous experimental studies are scarce

    Towards predicting chondroprotective capabilities of meniscus prostheses

    No full text

    Meniscus replacement : influence of geometrical mismatches on chondroprotective capabilities

    No full text
    The chondroprotective success of meniscal transplantation is variable. Poorly controlled factors such as a geometrical mismatch of the implant may be partly responsible. Clinical data, animal studies and cadaver experiments suggest that smaller transplants perform better than oversized, but clear evidence is lacking. The hypothesis of this study is that smaller menisci outperform larger ones because they distribute stresses more effectively at those particular locations that receive the highest loads. Consequently, collagen in the adjacent cartilage is protected from damage due to overstraining. Experimentally it is not possible to measure load distribution and collagen strain inside articular cartilage (AC). Therefore, a numerical model was used to determine the mechanical conditions throughout the depth of the AC. Meniscus implants with different sizes and mechanical properties were evaluated. These were compared with healthy and with meniscectomized joints. To account for the time-dependent behavior 600 s of loading was simulated; results were visualized after 1 s and 600 s. Simulations showed that ACā€™s strains strongly depended on implant size and loading duration. They depended less on the stiffness of the implant material. With an oversized implant, collagen strains were particularly large in the femoral AC initially and further increased upon sustained loading. The severest compressive strains occurred after sustained loading in the meniscectomized joint. Strains with an undersized meniscus were comparable to a perfectly sized implant. In conclusion, these results support the hypothesis that an undersized implant may outperform an oversized one because it distributes stresses better in the most intensely loaded joint area

    The effect of loading rate on the development of early damage in articular cartilage

    No full text
    Experimental reports suggest that cartilage damage depends on strain magnitude. Additionally, because of its poro-viscoelastic nature, strain magnitude in cartilage can depend on strain rate. The present study explores whether cartilage damage may develop dependent on strain rate, even when the presented damage numerical model is strain-dependent but not strain-rate-dependent. So far no experiments have been distinguished whether rate-dependent cartilage damage occurs in the collagen or in the non-fibrillar network. Thus, this research presents a finite element analysis model where, among others, collagen and non-fibrillar matrix are incorporated as well as a strain-dependent damage mechanism for these components. Collagen and non-fibrillar matrix stiffness decrease when a given strain is reached until complete failure upon reaching a maximum strain. With such model, indentation experiments at increasing strain rates were simulated on cartilage plugs and damage development was monitored over time. Collagen damage increased with increasing strain rate from 21 to 42 %. In contrast, damage in the non-fibrillar matrix decreased with increasing strain rates from 72 to 34 %. Damage started to develop at a depth of approximately 20 % of the sample height, and this was more pronounced for the slow and modest loading rates. However, the most severe damage at the end of the compression step occurred at the surface for the plugs subjected to 120 mm/min strain rate. In conclusion, the present study confirms that the location and magnitude of damage in cartilage may be strongly dependent on strain rate, even when damage occurs solely through a strain-dependent damage mechanism

    Relative contribution of articular cartilage's constitutive components to load support depending on strain rate

    Get PDF
    Cartilage is considered a biphasic material in which the solid is composed of proteoglycans and collagen. In biphasic tissue, the hydraulic pressure is believed to bear most of the load under higher strain rates and its dissipation due to fluid flow determines creep and relaxation behavior. In equilibrium, hydraulic pressure is zero and load bearing is transferred to the solid matrix. The viscoelasticity of the collagen network also contributes to its time-dependent behavior, and the osmotic pressure to load bearing in equilibrium. The aim of the present study was to determine the relative contributions of hydraulic pressure, viscoelastic collagen stress, solid matrix stiffness and osmotic pressure to load carriage in cartilage under transient and equilibrium conditions. Unconfined compression experiments were simulated using a fibril-reinforced poroviscoelastic model of articular cartilage, including water, fibrillar viscoelastic collagen and non-fibrillar charged glycosaminoglycans. The relative contributions of hydraulic and osmotic pressures and stresses in the fibrillar and non-fibrillar network were evaluated in the superficial, middle and deep zone of cartilage under five different strain rates and after relaxation. Initially upon loading, the hydraulic pressure carried most of the load in all three zones. The osmotic swelling pressure carried most of the equilibrium load. In the surface zone, where the fibers were loaded in tension, the collagen network carried 20 % of the load for all strain rates. The importance of these fibers was illustrated by artificially modifying the fiber architecture, which reduced the overall stiffness of cartilage in all conditions. In conclusion, although hydraulic pressure dominates the transient behavior during cartilage loading, due to its viscoelastic nature the superficial zone collagen fibers carry a substantial part of the load under transient conditions. This becomes increasingly important with higher strain rates. The interesting and striking new insight from this study suggests that under equilibrium conditions, the swelling pressure generated by the combination of proteoglycans and collagen reinforcement accounts cartilage stiffness for more than 90 % of the loads carried by articular cartilage. This finding is different from the common thought that load is transferred from fluid to solid and is carried by the aggregate modulus of the solid. Rather, it is transformed from hydraulic to osmotic swelling pressure. These results show the importance of considering both (viscoelastic) collagen fibers as well as swelling pressure in studies of the (transient) mechanical behavior of cartilage

    Should a native depth-dependent distribution of human meniscus constitutive components be considered in FEA-models of the knee joint?

    No full text
    The depth-dependent matrix composition of articular cartilage is important for its mechanical behavior. It is unknown whether the depth-dependent matrix composition of a meniscus is similarly important for its load-bearing function. The present objective was to determine whether it is necessary to account for the native distribution of matrix components in the cross-sectional plane of the meniscus, when studying its mechanical behavior in numerical models. To address this objective, measured depth-dependent distribution of matrix contents in the human meniscus, and fitted visco-elastic mechanical properties of the collagen were used as input in FEA simulations of a knee joint. The importance of including the depth-dependent matrix component constitution in the meniscus was determined by comparing simulations with an axisymmetric representation of the knee joint, which incorporated either the depth-dependent matrix composition, or homogenized matrix. Depth-dependent differences in water, collagen and proteoglycan content were observed, but these were not significantly different. The anterior region, with significantly higher collagen content, was statistically stiffer than the posterior region. However, depth wise, stiffness did not correlate to the constitution of the tissue. GAG content was significantly higher in the posterior than in the anterior region. Visco-elastic properties of meniscus collagen were fitted against tensile test data. Simulations show that the distribution of stresses and strains in the cartilage are slightly lower when the meniscus contains a depth-dependent constitution, but this difference is only modest. Therefore, this study suggests that knee joint mechanics is rather insensitive to the distribution of constitutive components in the cross section of the meniscus, and that the depth-dependent matrix distribution of the meniscus is not essential to be included in axisymmetric computational models of the knee joint
    corecore