119 research outputs found

    Stable dark and bright soliton Kerr combs can coexist in normal dispersion resonators

    Full text link
    Using the Lugiato-Lefever model, we analyze the effects of third order chromatic dispersion on the existence and stability of dark and bright soliton Kerr frequency combs in the normal dispersion regime. While in the absence of third order dispersion only dark solitons exist over an extended parameter range, we find that third order dispersion allows for stable dark and bright solitons to coexist. Reversibility is broken and the shape of the switching waves connecting the top and bottom homogeneous solutions is modified. Bright solitons come into existence thanks to the generation of oscillations in the switching wave profiles. Finally, oscillatory instabilities of dark solitons are also suppressed in the presence of sufficiently strong third order dispersion

    Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Full text link
    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons.Comment: 13 pages, 13 figure

    Formation of localized states in dryland vegetation: Bifurcation structure and stability

    Full text link
    In this paper, we study theoretically the emergence of localized states of vegetation close to the onset of desertification. These states are formed through the locking of vegetation fronts, connecting a uniform vegetation state with a bare soil state, which occurs nearby the Maxwell point of the system. To study these structures we consider a universal model of vegetation dynamics in drylands, which has been obtained as the normal form for different vegetation models. Close to the Maxwell point localized gaps and spots of vegetation exist and undergo collapsed snaking. The presence of gaps strongly suggest that the ecosystem may undergo a recovering process. In contrast, the presence of spots may indicate that the ecosystem is close to desertification

    Quadratic cavity soliton optical frequency combs

    Get PDF
    We theoretically investigate the formation of frequency combs in a dispersive second-harmonic generation cavity system, and predict the existence of quadratic cavity solitons in the absence of a temporal walk-off

    Parametric localized patterns and breathers in dispersive quadratic cavities

    Full text link
    We study the formation of localized patterns arising in doubly resonant dispersive optical parametric oscillators. They form through the locking of fronts connecting a continuous-wave and a Turing pattern state. This type of localized pattern can be seen as a slug of the pattern embedded in a homogeneous surrounding. They are organized in terms of a homoclinic snaking bifurcation structure, which is preserved under the modification of the control parameter of the system. We show that, in the presence of phase mismatch, localized patterns can undergo oscillatory instabilities which make them breathe in a complex manner

    Locking of domain walls and quadratic frequency combs in doubly resonant optical parametric oscillators

    Get PDF
    The formation of frequency combs (FCs) in high-Q microresonators with Kerr type of nonlinearity has attracted a lot of attention in the past decade [1]. Recently it has been shown that FCs can be also generated in dissipative dispersive cavities with quadratic nonlinearities [2,3], opening a new possibility of generating combs in previously unattainable spectral regions. Previous work has shown that modulational instability (MI) induces pattern and FC formation in degenerate optical parametric oscillators (OPOs) [4]. However, the existence of dissipative solitons or localized structures (LSs) is still unclear

    Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs

    Get PDF
    It has been recently uncovered that coherent structures in microresonators such as cavity solitons and patterns are intimately related to Kerr frequency combs. In this work, we present a general analysis of the regions of existence and stability of cavity solitons and patterns in the Lugiato-Lefever equation, a mean-field model that finds applications in many different nonlinear optical cavities. We demonstrate that the rich dynamics and coexistence of multiple solutions in the Lugiato-Lefever equation are of key importance to understanding frequency comb generation. A detailed map of how and where to target stable Kerr frequency combs in the parameter space defined by the frequency detuning and the pump power is provided. Moreover, the work presented also includes the organization of various dynamical regimes in terms of bifurcation points of higher codimension in regions of parameter space that were previously unexplored in the Lugiato-Lefever equation. We discuss different dynamical instabilities such as oscillations and chaotic regimes.This research was supported by the Research Foundation-Flanders (FWO), by the Spanish MINECO, and FEDER under Grants FISICOS (Grant No. FIS2007-60327) and INTENSE@COSYP (Grant No. FIS2012-30634), by Comunitat Autonoma de les Illes Balears, by the Research Council of the Vrije Universiteit Brussel (VUB), and by the Belgian Science Policy Office (BelSPO) under Grant No. IAP 7-35. S. Coen also acknowledges the support of the Marsden Fund of the Royal Society of New Zealand.Peer reviewe
    • …
    corecore