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The formation of frequency combs (FCs) in high-Q microresonators with Kerr type of nonlinearity has attracted
a lot of attention in the past decade [1]. Recently it has been shown that FCs can be also generated in dissipative
dispersive cavities with quadratic nonlinearities [2,3], opening a new possibility of generating combs in previously
unattainable spectral regions. Previous work has shown that modulational instability (MI) induces pattern and FC
formation in degenerate optical parametric oscillators (OPOs) [4]. However, the existence of dissipative solitons
or localized structures (LSs) is still unclear. In this work we present the locking of domain walls (DWs) as an
alternative mechanism to MI for the formation of LSs and FCs. DWs have been widely studied in the context
of Kerr cavities and diffractive OPO cavities [5,6]. Here we show that similar structures can arise in dispersive
quadratic cavities. To illustrate this, we consider a dispersive cavity with a quadratic medium phase matched for
degenerate OPO and driven by the field Bin at the frequency 2ω0 in a doubly resonant configuration. The formation
of dissipative structures in this type of cavity can be described by an infinite map for the slowly varying electric
field envelopes Am, and Bm, that are centered at frequency ω0 and 2ω0, respectively [4], where m indicates the
cavity round-trip number. With this map one may numerically explore the dynamics of the system. For example,

Figure 1: Panels (a) and (b) show the round-trip evolution of an initial noisy background [bottom], and the forma-
tion of a disordered stationary state composed of seven LSs [top]. Panel (c) shows how LS4 is formed through the
locking of two DWs. To simulate the infinite map we use the same parameters as in Ref. [4].

Fig. 1(a)-(b) show the formation of a dissipative structure, after a sufficient number of round-trips (m = 2 · 104),
from an initial noisy background. We see that i) both fields are phase locked and drift at the same velocity; ii)
for the A field one can identify a sequence of DWs connecting two different, and coexisting, CW states, that form
a disordered structure. Furthermore, the latter is composed of a sequence of LSs of different widths. One of
them, LS4, is plotted in panel (c). We demonstrate that this type of states can be described by a single non-local
parametrically forced Ginzburg-Landau model for A, that can be derived by adiabatic elimination of B [8]. In this
context, the B field is dynamically slaved to A. Using the last model, one may describe the formation of such
structures through the interaction of the DWs. If oscillations are present in the DWs’ profiles [see close-up view in
(c)], then locking occurs, and LSs are formed, as described in [9]. In the frequency domain, these LSs correspond
to coherent FCs formed around both ω0 and 2ω0.
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