83 research outputs found

    Violencia de Género: Detección y Pautas de Actuación

    Get PDF
    En este curso se contempla la violencia de género desde una perspectiva humana, social, asistencial y jurídica. Se matizarán las principales diferencias y características entre violencia de género y violencia doméstica así como las posibles respuestas a los casos que se nos planteen Así se destacarán las pautas de actuación ante una víctima de violencia de género y un maltratador

    Seminario sobre TFG

    Get PDF
    El objetivo de esta presentación es ofrecer una información clara y precisa sobre cómo hacer un TFG así como ofrecer herramientas para su elaboració

    A GPU-based Correlator X-engine Implemented on the CHIME Pathfinder

    Full text link
    We present the design and implementation of a custom GPU-based compute cluster that provides the correlation X-engine of the CHIME Pathfinder radio telescope. It is among the largest such systems in operation, correlating 32,896 baselines (256 inputs) over 400MHz of radio bandwidth. Making heavy use of consumer-grade parts and a custom software stack, the system was developed at a small fraction of the cost of comparable installations. Unlike existing GPU backends, this system is built around OpenCL kernels running on consumer-level AMD GPUs, taking advantage of low-cost hardware and leveraging packed integer operations to double algorithmic efficiency. The system achieves the required 105TOPS in a 10kW power envelope, making it among the most power-efficient X-engines in use today.Comment: 6 pages, 5 figures. Accepted by IEEE ASAP 201

    Calibrating CHIME, A New Radio Interferometer to Probe Dark Energy

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 -- 800\,MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 -- 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements

    Limits on the ultra-bright Fast Radio Burst population from the CHIME Pathfinder

    Full text link
    We present results from a new incoherent-beam Fast Radio Burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution's slope, αlogNlogS\alpha\equiv-\frac{\partial \log N}{\partial \log S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power-law with α=0.7\alpha=0.7, we would expect an FRB detection every few days, making this the fastest survey on sky at present. We collected 1268 hours of data, amounting to one of the largest exposures of any FRB survey, with over 2.4\,×\times\,105^5\,deg2^2\,hrs. Having seen no bursts, we have constrained the rate of extremely bright events to < ⁣13<\!13\,sky1^{-1}\,day1^{-1} above \sim\,220(τ/ms)\sqrt{(\tau/\rm ms)} Jy\,ms for τ\tau between 1.3 and 100\,ms, at 400--800\,MHz. The non-detection also allows us to rule out α0.9\alpha\lesssim0.9 with 95%\% confidence, after marginalizing over uncertainties in the GBT rate at 700--900\,MHz, though we show that for a cosmological population and a large dynamic range in flux density, α\alpha is brightness-dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments

    Characterization of the John A. Galt telescope for radio holography with CHIME

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter foregrounds remains a key challenge. Due to the high dynamic range between 21 cm and foreground emission, an exquisite calibration of instrument systematics, notably the telescope beam, is required to successfully filter out the foregrounds. One technique being used to achieve a high fidelity measurement of the CHIME beam is radio holography, wherein signals from each of CHIME's analog inputs are correlated with the signal from a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m Galt telescope tracks a bright point source transiting over CHIME. In this work we present an analysis of several of the Galt telescope's properties. We employ driftscan measurements of several bright sources, along with background estimates derived from the 408 MHz Haslam map, to estimate the Galt system temperature. To determine the Galt telescope's beam shape, we perform and analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use early holographic measurements to measure the Galt telescope's geometry with respect to CHIME for the holographic analysis of the CHIME and Galt interferometric data set

    An Injection System for the CHIME/FRB Experiment

    Full text link
    Dedicated surveys searching for Fast Radio Bursts (FRBs) are subject to selection effects which bias the observed population of events. Software injection systems are one method of correcting for these biases by injecting a mock population of synthetic FRBs directly into the realtime search pipeline. The injected population may then be used to map intrinsic burst properties onto an expected signal-to-noise ratio (SNR), so long as telescope characteristics such as the beam model and calibration factors are properly accounted for. This paper presents an injection system developed for the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project (CHIME/FRB). The system was tested to ensure high detection efficiency, and the pulse calibration method was verified. Using an injection population of ~85,000 synthetic FRBs, we found that the correlation between fluence and SNR for injected FRBs was consistent with that of CHIME/FRB detections in the first CHIME/FRB catalog. We also noted that the sensitivity of the telescope varied strongly as a function of the broadened burst width, but not as a function of the dispersion measure. We conclude that some of the machine-learning based Radio Frequency Interference (RFI) mitigation methods used by CHIME/FRB can be re-trained using injection data to increase sensitivity to wide events, and that planned upgrades to the presented injection system will allow for determining a more accurate CHIME/FRB selection function in the near future.Comment: 13 pages, 8 figures. Submitted to A

    A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman-α\alpha Forest

    Full text link
    We report the detection of 21 cm emission at an average redshift zˉ=2.3\bar{z} = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-α\alpha forest from eBOSS. Data collected by CHIME over 88 days in the 400500400-500~MHz frequency band (1.8<z<2.51.8 < z < 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with k0.13 Mpc1k_\parallel \lesssim 0.13\ \text{Mpc}^{-1} at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyman-α\alpha forest flux transmission spectra to estimate the 21 cm-Lyman-α\alpha cross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σ9\sigma detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals 610\sim6-10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of \tcm emission to date, and set the stage for future 21 cm intensity mapping analyses at z>1.8z>1.8
    corecore